Huanqin Wang | Experimental methods | Best Researcher Award

Prof. Huanqin Wang | Experimental methods | Best Researcher Award

Hefei Institutes of Physical Science, Chinese Academy of Sciences | China

Professor Huanqin Wang is a distinguished researcher and educator currently serving as a professor at the Hefei Institutes of Physical Science, Chinese Academy of Sciences. He specializes in ultrafine particle sensing and environmental detection technologies. With a strong academic background, including a Ph.D. in microelectronics and solid-state electronics from the University of Science and Technology of China, he has made substantial contributions to improving environmental quality and addressing pollution through innovative technological solutions.

๐Ÿ‘จโ€๐ŸŽ“ Profile

Scopus

Early Academic Pursuits ๐ŸŽ“

Professor Wang earned his B.S. degree in applied physics in 2004, followed by a Ph.D. in microelectronics and solid-state electronics in 2009 from the University of Science and Technology of China. His academic journey laid the foundation for his future research and expertise in environmental sensing technologies, leading to his role as a professor at the State Key Laboratory of Transducer Technology, part of the Institute of Intelligent Machine.

Professional Endeavors ๐Ÿ’ผ

Currently, Wang is a professor at the Chinese Academy of Sciences, where he also manages research projects funded by prestigious national programs such as the National Key Research and Development Program of China and the National Natural Science Fund of China. Over his career, he has been instrumental in driving several projects aimed at pollution control and sensing technologies that address real-world environmental issues.

Contributions and Research Focus ๐ŸŒฑ

Professor Wangโ€™s primary research interest lies in the development of new technologies for mobile pollution source emission detection, with a particular focus on ultrafine particle sensing. He has developed key equipment such as the miniature atmospheric ultrafine particle size spectrometer and an on-board particulate matter emission testing system, which have been mass-produced and successfully applied in urban air quality evaluations and vehicle emission retrofits.

Impact and Influence ๐ŸŒ

Wang’s work has made significant impacts on pollution control efforts, especially in the areas of diesel vehicle emissions and urban particulate monitoring. His devices are now used to assess the effectiveness of diesel vehicle particulate filter retrofits and are deployed in cities such as Tianjin and Tangshan. With over 70 published articles and 60 patents, Wangโ€™s research has shaped how we understand and address air quality and emissions in modern cities.

Academic Cites ๐Ÿ“š

Professor Wangโ€™s publications have been widely recognized, with a citation index of 828. His peer-reviewed articles in SCI, Scopus, and other respected journals have become critical resources for the scientific community, showcasing the high relevance and impact of his research on environmental science and technology.

Research Skills ๐Ÿ› ๏ธ

Professor Wang excels in various research methodologies, particularly in sensor technology and environmental detection systems. His expertise spans from conceptualization and design to the implementation of cutting-edge sensing devices. Additionally, his experience in consultancy and industry projects further demonstrates his ability to translate academic research into practical, real-world solutions.

Teaching Experience ๐Ÿ‘จโ€๐Ÿซ

As a professor with the Institute of Intelligent Machine, Professor Wang has also contributed to graduate-level education in the fields of microelectronics, sensor technology, and environmental science. His teaching influences future generations of researchers and engineers who will continue to address global environmental challenges.

Legacy and Future Contributions ๐Ÿ”ฎ

Looking forward, Professor Wangโ€™s continued research promises to push the boundaries of environmental monitoring technologies. His development of more advanced sensing devices will play a pivotal role in addressing global pollution and contributing to sustainable urban development. His legacy will undoubtedly influence both the scientific community and policy makers in the fight against environmental degradation and climate change.

ย  Publications Top Notes

Electrostatic vehicle exhaust particle sensor for the evaluation of the diesel particulate filter (DPF)

  • Authors: Sun, Q., Wang, H., Liu, J., Yu, F., Gui, H.
    Journal: Instrumentation Science and Technology
    Year: 2025

Simulation of electrostatic particulate matter sensor regeneration based on the particulate deposition patterns

  • Authors: Liu, J., Wang, H., Sun, Q., Yu, F., Feng, B.
    Journal: Sensor Review
    Year: 2024

Analysis of excessive NOx emission from tampered heavy-duty vehicles based on real-time data and its impact on air pollution

  • Authors: Li, Y., Wang, H., Fu, M., Yang, Y., Gui, H.
    Journal: Atmospheric Pollution Research
    Year: 2024

Structural simulation and performance evaluation of self-priming electrostatic diesel vehicle emission particle sensor

  • Authors: Sun, Q., Wang, H., Huang, G., Gui, H., Chen, D.-R.
    Journal: Instrumentation Science and Technology
    Year: 2024

Beijing Heavy-Duty Diesel Vehicle Battery Capacity Conversion and Emission Estimation in 2022

  • Authors: Fu, M., Yang, Y., Li, Y., Yu, F., Liu, J.
    Journal: Sustainability (Switzerland)
    Year: 2023

 

 

Jun Zhang | Particle Experiments | Best Researcher Award

Dr. Jun Zhang | Particle Experiments | Best Researcher Award

Assistant Professor at Hefei University of Technology, China

Dr. Zhang Jun is an Assistant Professor in the School of Mechanical Engineering at Hefei University of Technology. His research focuses on heat and mass transfer in cryogenic systems, with significant contributions to oscillating heat pipes and superconducting technologies. Dr. Zhang obtained his Ph.D. in Engineering in Power Engineering and Thermophysics from Xi’an Jiaotong University in 2016. He has authored and co-authored numerous publications in prestigious journals such as Cryogenics, Applied Physics Letters, and Physics of Fluids. His research also explores graphene membranes and memristors, contributing to innovative solutions in nanotechnology and vacuum science. Dr. Zhang is an active member of the academic community, continuously advancing the understanding of complex thermal-fluid systems, especially in cryogenic and nanomaterial applications.

Profile๐ŸŽ“

๐Ÿง‘โ€๐ŸŽ“ Early Academic Pursuits

Dr. Zhang Jun embarked on his academic journey with a keen interest in thermodynamics and heat transfer systems. He completed his Ph.D. in Engineering in Power Engineering and Thermophysics from Xi’an Jiaotong University in September 2016. His research during this period was foundational in understanding heat and mass transfer processes in cryogenic systems, particularly in superfluid helium environments. His doctoral studies laid the groundwork for his future career in energy systems, nano-engineering, and thermal management technologies. Dr. Zhang’s early work also demonstrated a strong aptitude for interdisciplinary research, integrating principles of material science with thermodynamics.

๐Ÿ‘จโ€๐Ÿซ Professional Endeavors

Since December 2016, Dr. Zhang Jun has been serving as an Assistant Professor in the School of Mechanical Engineering at Hefei University of Technology. In this role, he has contributed significantly to both research and education, mentoring students and collaborating with fellow researchers on a range of innovative projects. His professional endeavors are marked by his expertise in cryogenic systems, nano-materials, and advanced heat transfer technologies, with a special focus on helium-based oscillating heat pipes and superconducting systems. His research has practical implications in diverse fields such as space exploration, nano-technology, and energy systems.

๐Ÿง‘โ€๐Ÿ”ฌ Contributions and Research Focus

Dr. Zhang Jun’s research is centered around heat and mass transfer in cryogenic systems, with particular emphasis on superfluid helium and oscillating heat pipes. His work has also extended to the study of graphene membranes and vacuum systems, pushing the boundaries of nano-material science. Notable contributions include groundbreaking studies on the thermal performance of superfluid helium systems and gas diffusion processes through porous graphene membranes. His pioneering research on memristors and nano-composite materials has made significant strides in the fields of nanoelectronics and energy-efficient technologies. Through his work, Dr. Zhang has bridged the gap between theoretical research and practical applications, advancing both scientific knowledge and technological innovation.

๐ŸŒ Impact and Influence

Dr. Zhang Jun has made a notable impact on the fields of cryogenics, nanotechnology, and thermal-fluid dynamics. His published articles in high-impact journals such as Cryogenics, Physics of Fluids, and Applied Physics Letters are regularly cited, influencing researchers and industry leaders alike. His work on cryogenic heat transfer has advanced the understanding of superconducting systems and energy-efficient technologies, making significant contributions to industries like energy storage, space technology, and advanced manufacturing. Dr. Zhangโ€™s influence extends beyond academia, as his research has been adopted by industry professionals working on thermal systems and nano-engineered materials.

๐Ÿ“š Academic Cites

Dr. Zhang Jun’s work has been extensively cited in the scientific community, further solidifying his reputation as a thought leader in thermal engineering and nano-materials. Key articles, such as his study on helium-based oscillating heat pipes and superfluid helium cryogenic systems, have garnered significant attention in journals like Cryogenics and Journal of Vacuum Science and Technology. His research on graphene membranes and gas diffusion processes has also led to influential publications in journals such as Physics of Fluids and Vacuum. Dr. Zhangโ€™s ability to address complex thermal-fluid problems and offer innovative solutions has contributed to his growing citation index, reflecting his influence on the field.

๐Ÿ› ๏ธ Technical Skills

Dr. Zhang Jun possesses a broad set of technical skills that are vital to his interdisciplinary research. His expertise spans areas such as thermal-fluid dynamics, nano-material engineering, cryogenics, and vacuum technology. He is proficient in advanced thermal analysis, simulation tools, and material characterization techniques. His work on nano-composite materials, graphene membranes, and heat exchanger systems is supported by his strong background in computational modeling, experimental research, and system optimization. Additionally, his technical proficiency extends to nanoelectronics, memristor technology, and energy-efficient systems, allowing him to explore new frontiers in nano-manufacturing and superconducting technologies.

๐Ÿ‘จโ€๐Ÿซ Teaching Experience

As an Assistant Professor at Hefei University of Technology, Dr. Zhang Jun has demonstrated a passion for teaching and mentoring the next generation of engineers. His courses cover a range of topics in mechanical engineering, including cryogenic systems, thermal engineering, and nano-materials. Dr. Zhang’s teaching style blends theoretical rigor with practical applications, encouraging students to explore the latest technologies in advanced thermal systems and material science. He also guides students through research projects in areas like nanoelectronics, cryogenic heat transfer, and superfluid helium systems, preparing them for careers in both academia and industry. His dedication to research-based education has made him a respected figure in his department.

๐ŸŒฑ Legacy and Future Contributions

Dr. Zhang Junโ€™s legacy in thermal engineering and cryogenics is already firmly established through his influential research and academic contributions. Looking forward, he is poised to continue making transformative contributions in the fields of cryogenic system optimization, nano-engineered materials, and advanced heat transfer technologies. Dr. Zhangโ€™s future research directions include exploring the integration of nano-materials in sustainable energy systems and advancing the capabilities of superconducting systems for applications in quantum computing and space exploration. As an active researcher and educator, Dr. Zhang is dedicated to expanding the boundaries of thermophysics and contributing to the development of next-generation technologies that address global energy challenges and sustainable development goals.

Top Noted Publications๐Ÿ“–

Investigation on the surface diffusion process of gas molecules in porous graphene membranes
  • Authors: Jun Zhang, Chenhui Liu, Rui Huang, Xudi Wang, Qing Cao
    Journal: Physics of Fluids
    Year: 2024

Application of Helium-Based oscillating heat pipes in cryogenic superconducting system

  • Authors: Jun Zhang, Rui Huang, Changcheng Ma, Yi Huo, Xudi Wang, Qing Cao
    Journal: Cryogenics
    Year: 2024

Resistive switching behavior of the memristor based on WS2 nanosheets and polyvinylpyrrolidone nanocomposites

  • Authors: Qing Cao, Limiao Xiong, Xudong Yuan, Pengcheng Li, Jun Wu, Hailin Bi, Jun Zhang
    Journal: Applied Physics Letters
    Year: 2022

New leak element based on transfer-free single-layer graphene membrane

  • Authors: Xudi Wang, Hanwen Lin, Hailin Bi, Qing Cao, Donghui Meng, Lichen Sun, Guohua Ren, Jiadong Qi, Jun Zhang
    Journal: Vacuum
    Year: 2022