Suresh Kumar | Experimental methods | Best Researcher Award

Dr. Suresh Kumar | Experimental methods | Best Researcher Award

Associate Professor at MMEC, Maharishi Markandeshwar (Deemed to be University) Mullana | India

Dr. Suresh Kumar is an accomplished Associate Professor (Grade-II) at Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana. With over 11 years of post-Ph.D. experience, he is widely recognized for his research in nanomaterials, dilute magnetic semiconductors, and photocatalysis. A prolific researcher and educator, he has authored 51 research publications, holds six patents, and actively supervises PG and Ph.D. research. His academic presence is validated across platforms such as Scopus, Web of Science, Google Scholar, and Vidwan. He is deeply committed to institutional development, student mentorship, and innovative science education in India.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Suresh Kumar’s academic journey began with a B.Sc. in Non-Medical Sciences from Himachal Pradesh University in 1998. He further pursued M.Sc. Physics (2002), followed by B.Ed and M.Ed degrees, reinforcing his strong foundation in both science and education. His interest in research led him to complete an M.Phil in Physics, and later, a Ph.D. in Physics & Materials Science from Jaypee University of Information Technology in 2014. His doctoral work on transition metal-doped CdS nanofilms marked a turning point, setting the stage for a career rooted in cutting-edge nanotechnology and materials research.

💼 Professional Endeavors

Dr. Kumar has held various academic roles, beginning as a Lecturer in 2007, advancing through positions like Teaching Assistant, Assistant Professor, and Associate Professor. Currently serving at MM(DU), Mullana, his journey reflects a steady progression in leadership, teaching, and research responsibility. He has contributed to institutional quality enhancement by coordinating activities such as NAAC Criteria III, FDPs, curriculum revision, and lab management. His previous affiliations include Jaypee University of Information Technology, Kalpi Institute of Technology, and Shivalik Institute of Engineering & Technology, contributing across UG, PG, and Ph.D. levels.

🔬 Contributions and Research Focus

Dr. Suresh Kumar’s research revolves around II-VI semiconductors, dilute magnetic semiconductors (DMS), photovoltaics, and photocatalysis. His work has pioneered advancements in the green synthesis of nanomaterials, particularly using plant extracts for nanoparticle synthesis, and has practical applications in energy and environmental remediation. His six patents include innovations in nanostructured thin films, solar energy tools, and beekeeping equipment, demonstrating a clear alignment with sustainable and applied science. With consistent publications in indexed journals (WOS, Scopus) and supervision of multiple research scholars, Dr. Kumar’s contributions deeply influence emerging material science trends.

🌍 Impact and Influence

Dr. Kumar’s research has made a measurable global impact, evidenced by 665 citations on Google Scholar, 524 on Web of Science, and 471 on Scopus. His h-index ranges from 11 to 14, reflecting both quality and relevance of his work. He has guided multiple dissertations and Ph.D. theses, and his innovations in solar-powered devices and eco-friendly nanoparticle synthesis have real-world value. He is a regular speaker and session chair at international conferences, such as the Halich Congress, Turkey, and his leadership has helped shape young researchers’ careers, affirming his academic and scientific influence both nationally and abroad.

📚 Academic Cites and Recognition

Dr. Kumar’s scholarly visibility is reinforced through profiles on Google Scholar, Scopus, Web of Science, ORCID, ResearchGate, and Vidwan. His 51 peer-reviewed publications span reputed journals with a combined impact factor of 75.74. These platforms showcase his interdisciplinary reach, from nanotechnology and materials characterization to renewable energy innovations. His academic identity is globally recognized, and his works are often referenced in the domains of thin film physics, green nanotechnology, and semiconductors. This strong digital footprint cements his role as a credible and referenced authority in his research areas.

🧪 Research Skills

Dr. Kumar possesses advanced expertise in material synthesis and characterization techniques, including Chemical Bath Deposition (CBD), vacuum and spin coating, and tools such as XRD, SEM, AFM, TEM, UV-Vis-NIR, EDX, FTIR, and VSM. His experimental precision is matched by a theoretical understanding of optical, structural, and magnetic properties of nanomaterials. He has a strong command over green synthesis methods and is skilled at translating laboratory research into patents and prototypes. His versatile research abilities are applied across diverse sectors—energy, healthcare, agriculture, and education technology making him a valuable asset in interdisciplinary scientific exploration.

🎓 Teaching Experience

Dr. Kumar brings 17+ years of teaching experience, including over 11 years post-Ph.D., spanning UG, PG, and Ph.D. programs. At MM(DU), he teaches B.Sc. Physics (Honors), M.Sc. Physics, and Ph.D. coursework, while also mentoring research students. Known for his engaging, student-centered teaching style, he integrates technology (Moodle, Swayam MOOCs) and hands-on lab work to foster experiential learning. As Lab In-charge and academic coordinator, he ensures high standards in curriculum delivery and laboratory safety. His commitment to academic excellence and student mentorship is a hallmark of his teaching legacy.

🏆 Awards and Honors 

Dr. Suresh Kumar has received numerous accolades, such as the Chanakya Award 2024 and Indo-Global Education Excellence Award 2024 from ICERT. He was honored with a session headship at the Halich Congress, Turkey, and received a Teacher Innovation Award during the pandemic from Rakshita Welfare Society. Earlier in his career, he secured a Best Poster Prize at RTMS-2011 and was awarded a Research Assistantship during his Ph.D. His academic diligence also earned him a merit certificate during B.Ed. These recognitions affirm his dedication to innovation, research impact, and educational leadership.

🔮 Legacy and Future Contributions

Dr. Kumar’s legacy lies in his innovative, sustainable, and interdisciplinary research, as well as his devotion to student growth and institutional advancement. Looking ahead, he aims to secure international collaborations, government-funded research projects, and explore technology transfer opportunities for his patented innovations. He envisions contributing to national science missions through eco-friendly materials research, renewable energy systems, and academic policy reform. His future work will likely expand into translational research, benefiting industries and communities alike. Dr. Kumar’s trajectory marks him as a thought leader and changemaker in the realms of science, innovation, and education.

Publications Top Notes

Solvothermal synthesis of PVP-assisted CuS structures for sunlight-driven photocatalytic degradation of organic dyes

  • Authors: Vishal Dhiman, Suresh Kumar, Abhishek Kandwal, Pankaj Sharma, Ankush Thakur, Sanjay Kumar Sharma
    Journal: Physica B: Condensed Matter
    Year: 2025

Enhanced photoconversion efficiency in dye-sensitized solar cells through Ag and La modified ZnO photoanodes

  • Authors: Aman Kumar, Suresh Kumar, Virender Singh Kundu, Kirti Hooda, Anil Vohra, Suresh Kumar, Mohit Podia, Abhishek Kandwal, Praveen Vummadisetty Naidu
    Journal: Physica Scripta
    Year: 2025

Photocatalytic Activity of ZnO Nanostructures

  • Authors: Anu Kapoor, Naveen Kumar, Suresh Kumar
    Journal: Book Chapter – In: Advanced Nanomaterials for Environmental Applications (Taylor & Francis)
    Year: 2025

Green Synthesis of Nanoparticles using Pea Peel Biomass and Their Assessment on Seed Germination of Tomato, Chilli and Brinjal Crop

  • Authors: Anjali Kanwal, Bikram Jit Singh, Suresh Kumar, Rippin Sehgal, Sushil Kumar Upadhyay, Raj Singh
    Journal: Indian Journal of Agricultural Research
    Year: 2025

A comprehensive review of bismuth, lanthanum and strontium based double perovskites − Unravelling structural, magnetic, and dielectric properties

  • Authors: Jagadish Parsad Nayak, Rohit Jasrotia, Avi Kumar Sharma, Abhishek Kandwal, Pratiksha Agnihotri, Mika Sillanpää, Suman, M. Ramya, Vaseem Raja, Suresh Kumar, et al.
    Journal: Inorganic Chemistry Communications
    Year: 2024

 

Guangdi Zhao | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Guangdi Zhao | Experimental methods | Best Researcher Award

Associate professor at University of Science and Technology Liaoning | China

Guangdi Zhao is an associate professor and currently the associate dean of the School of Materials and Metallurgy. He serves as a doctoral supervisor with a strong academic foundation from Central South University, University of Chinese Academy of Sciences, and University of Science and Technology of China. Since beginning his career in 2017, Zhao has excelled in both research and academic leadership, building a reputable profile in materials science and engineering. His ongoing dedication to advancing metallurgical education and research reflects his commitment to scientific excellence and mentorship.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Zhao’s academic journey started with a bachelor’s degree in materials science and engineering at Central South University, followed by a master’s in materials science at the University of Chinese Academy of Sciences, and culminated in a Ph.D. at the University of Science and Technology of China. Throughout his studies, he developed a strong foundation in metallurgical processes and materials characterization, which laid the groundwork for his future research. His early training focused on innovative materials design and engineering, preparing him for an impactful academic and research career.

🔬 Professional Endeavors

Since July 2017, Zhao has grown from an early-career researcher to a respected academic leader, currently holding the position of associate dean and doctoral supervisor. He has led 4 vertical and 2 horizontal research projects funded by prestigious sources, including the National Natural Science Foundation of China and provincial science foundations. Zhao also hosts educational reform projects at his institution, illustrating his dual focus on research innovation and teaching improvement. His role expands beyond research to academic leadership and mentoring young scientists.

🛠️ Contributions and Research Focus

Zhao’s research concentrates on materials science and metallurgy, particularly in developing and optimizing metallurgical processes and materials properties. He has published 17 SCI/EI papers as first or corresponding author in internationally recognized journals such as Materials Science & Engineering A and Journal of Alloys and Compounds. His work addresses critical challenges in casting, forging, and metallographic skills, emphasizing defect control, microstructure analysis, and innovative alloy design. Zhao’s contributions push the boundaries of materials engineering for practical industrial applications.

🌟 Impact and Influence

Guangdi Zhao has significantly impacted the materials science community through his research, publications, and mentorship. His leadership on multiple funded projects reflects recognition of his scientific expertise. As an associate dean and committee member in Liaoning Province’s casting and forging industry, he influences both academic and industrial practices. His students’ success in national competitions and his role on editorial boards for “Special Steel” and “CHINA FOUNDRY” amplify his influence, promoting high standards in both research and teaching.

📚 Academic Citations

With 17 SCI/EI-indexed publications, Zhao maintains a strong academic presence, contributing original research to top materials science journals. His first-author and corresponding-author roles in highly cited papers demonstrate leadership in research output. These works are frequently cited by peers, reflecting the relevance and impact of his findings in metallurgical science. Zhao’s growing citation record highlights his ongoing contribution to advancing knowledge and provides a solid foundation for future collaborative research and scholarly influence.

🧰 Research Skills

Zhao possesses advanced expertise in materials characterization, microstructure analysis, and metallurgical process optimization. His skills include designing experimental protocols for alloy development, mastering metallographic techniques, and utilizing scientific methods to improve casting and forging processes. He is proficient in leading multidisciplinary research teams, securing funding, and translating fundamental research into practical industrial applications. Zhao’s technical acumen and problem-solving abilities are key to his success in both research and mentoring.

🎓 Teaching Experience

As an associate professor and doctoral supervisor, Zhao demonstrates strong commitment to education. He has won awards such as the Quality Classroom Award and provincial recognition for excellence in guiding students, particularly in metallographic skills competitions. Zhao actively develops and reforms educational programs, aiming to enhance student learning experiences in materials science. His hands-on mentorship helps students excel academically and competitively, fostering a new generation of researchers with robust technical and theoretical knowledge.

🏅 Awards and Honors

Zhao’s achievements have been recognized through numerous honors, including the prestigious “Hundred, Thousand, Thousand Talents Project” and “Ten Thousand” level candidate status in Liaoning Province. He has received the third prize in the Liaoning Provincial Teacher Teaching Innovation Competition, the Quality Classroom Award, and provincial-level Excellent Guidance Teacher accolades. Additionally, Zhao earned the third prize of Liaoning Provincial Natural Science Academic Achievement Award, underscoring his research excellence and educational impact at both provincial and institutional levels.

🔮 Legacy and Future Contributions

Guangdi Zhao’s legacy is grounded in his dedication to advancing metallurgical science through high-impact research, leadership, and mentorship. As associate dean, he shapes academic policies and fosters innovation in materials education. Zhao’s future contributions are expected to expand international collaborations, explore novel alloy systems, and enhance industrial applications of his research. His commitment to student development ensures a lasting impact on the next generation of scientists, positioning him as a leading figure in China’s materials science community.

Publications Top Notes

  • Title: Effect of homogenization treatment on the microstructure evolution and hot deformation behavior of hard-deformed superalloy GH4975
    Authors: Zhao Guangdi, Zang Ximin, Sun Yixuan, Xin Xin, Li Xue, Wang Lide, Wang Li
    Journal: Materials Science and Engineering: A
    Year: 2025

  • Title: Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li
    Authors: Guangdi Zhao, Ximin Zang, Yuan Jing, Nan Lü, Jinjiang Wu
    Journal: Materials Science and Engineering: A
    Year: 2021

  • Title: Microstructure and hot ductility behavior of Ni-based superalloy U720Li with boron addition
    Authors: Guang-Di Zhao, Fang Liu, Xi-Min Zang, Wen-Ru Sun
    Journal: Rare Metals
    Year: 2021

  • Title: Role of carbon in modifying solidification and microstructure of a Ni-based superalloy with high Al and Ti contents
    Authors: Guang-di Zhao, Xi-min Zang, Wen-ru Sun
    Journal: Journal of Iron and Steel Research International
    Year: 2021

Girum Girma Bizuneh | Experimental methods | Best Researcher Award

Dr. Girum Girma Bizuneh | Experimental methods | Best Researcher Award

R&D project Manager at Hunan Hongyue New Energy Materials Co.Ltd. | China

Dr. Girum Girma Bizuneh is a seasoned researcher, academic, and R&D leader with specialized expertise in battery technology, electrochemistry, and materials recycling. With over 15 years of progressive experience in research and academia, he has contributed significantly to advancements in lithium-ion and lithium-sulfur batteries. He earned his Ph.D. and M.Sc. from Xiamen University, China, and held various positions in Arba Minch University (Ethiopia), Hunan University, and currently serves as R&D Manager at Hunan Hongyue New Energy Materials Recycling Co. Ltd. His work merges academic rigor with industry-driven innovation in sustainable energy storage.

👨‍🎓Profile

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Bizuneh began his academic journey with a B.Sc. in Chemistry from Arba Minch University, Ethiopia, in 2007. His early interest in chemical processes and materials led him to pursue higher education in China, where he completed both M.Sc. (2013) and Ph.D. (2020) degrees at Xiamen University, renowned for its strong materials science and chemistry programs. During his studies, he developed a solid foundation in electrochemistry, particularly ion transfer across interfaces and battery chemistry, setting the stage for his future research in advanced battery systems and electrolyte engineering.

🧑‍🔬 Professional Endeavors 

Professionally, Dr. Bizuneh has held academic and industry roles that span both teaching and research. Starting as a Lab Technician and Lecturer at Arba Minch University, he later contributed to cutting-edge battery research at Hunan University as a University Research Assistant. Since 2022, he has served as R&D Manager at Hunan Hongyue, where he oversees project direction in battery materials recycling. His unique blend of academic insight and industrial R&D acumen positions him as a critical link between scientific discovery and real-world energy solutions, especially in the context of sustainable technologies and resource recovery.

🔋 Contributions and Research Focus

Dr. Bizuneh’s research is deeply focused on next-generation energy storage technologies, including Li-ion, Li-S batteries, electrochemical capacitors, and electrolyte additive engineering. His work on interface chemistry and solid auxiliary redox couples has contributed to enhancing battery performance and life span. A significant part of his research also emphasizes eco-friendly battery recycling strategies, targeting critical materials recovery and lifecycle sustainability. His peer-reviewed publications, including in top-tier journals, demonstrate his commitment to advancing practical and scalable solutions in the field of electrochemical energy storage and recycling science.

🌍 Impact and Influence

Dr. Bizuneh has established himself as an influential figure in the global battery research community, particularly through his work on high-voltage cathode design and recyclable battery technologies. His co-authored papers have been widely cited and have significantly influenced the direction of interface engineering in energy storage. Notably, he received the Top Cited Article Award (Wiley, 2025) for his publication on carbon materials for capacitors. Through academic and industrial collaboration across China and Ethiopia, he continues to bridge research innovation and societal energy needs, fostering cross-border knowledge transfer and technological adoption.

🧠 Research Skills and Tools

Dr. Bizuneh brings a rich skill set in both experimental and computational tools used in battery research. He is proficient in electrochemical techniques, materials synthesis, and battery performance evaluation. He has expertise in scientific software such as OriginPro, ZView, ChemOffice, and EndNote. In addition, he is skilled in data analysis, interface modeling, and photo editing tools like Adobe Photoshop and Lightroom for scientific visualization. His lab leadership and project management skills enable him to effectively design, execute, and evaluate R&D programs that deliver both academic knowledge and industrial utility.

👨‍🏫 Teaching Experience

With a decade of teaching experience at Arba Minch University, Dr. Bizuneh has taught a range of undergraduate chemistry courses and supervised laboratory sessions. From Graduate Assistant to Lecturer, he demonstrated a strong commitment to academic mentorship and student development. He designed and instructed classes in physical chemistry, analytical methods, and laboratory safety and operations. His teaching style blended theoretical depth with practical application, preparing students for careers in science and technology. His contributions to curriculum development and lab management were instrumental in strengthening the university’s chemistry program infrastructure.

🏆 Awards and Honors

Dr. Bizuneh’s contributions have been formally recognized through several prestigious awards:

  • 🏅 Top Cited Article Award (2025) from Wiley for impactful research on electrochemical capacitors

  • 🎓 Heguang Yangtze River Scholarship (2019) awarded by Xiamen University for academic excellence

  • 🌟 Xiamen University International Student Scholarship (2020)
    These honors underscore his scientific impact, academic performance, and leadership potential. They also highlight his dedication to advancing innovative and sustainable energy solutions. His work continues to influence both academic and industrial communities in the fields of battery science and material chemistry.

🚀 Legacy and Future Contributions

Dr. Bizuneh is poised to leave a lasting legacy in the field of electrochemical energy storage, especially through his efforts in battery recycling and sustainable materials development. His current R&D leadership role positions him to translate academic insights into industrial practices, particularly in addressing battery waste challenges. Looking forward, he aims to develop green recycling technologies, solid-state battery systems, and contribute to policy and innovation frameworks for clean energy. His cross-disciplinary and international background makes him a valuable contributor to global energy transformation, and a mentor for the next generation of scientists and innovators.

Top Noted Publications

High Performance Li||NMC622 Battery Enabled by Multi-Functional Electrolyte Additive Chemistry

  • Authors: Girum Girma Bizuneh, Amir Mahmoud Makin Adam, Chunlei Zhu, Junda Huang, Huaping Wang, Zhongsheng Wang, Daxiong Wu, Lei Guo, Maryam Chafiq, Young Gun Ko
    Journal: Electrochimica Acta
    Year: 2025

Promoting the Sulfur Conversion Kinetics via a Solid Auxiliary Redox Couple Embedded in the Cathode of Li–S Batteries

  • Authors: Girum Girma Bizuneh, Jingmin Fan, Pan Xu, Ruming Yuan, Lin Cao, Mingsen Zheng, Quan-Feng Dong
    Journal: Sustainable Energy & Fuels
    Year: 2020

LaLiO₂-Based Multi-Functional Interlayer for Enhanced Performance of Li–S Batteries

  • Authors: Girum Girma Bizuneh
    Journal: Journal of The Electrochemical Society
    Year: 2019

Solvation Effect Facilitates Ion Transfer across Water/1,2‐Dichloroethane Interface

  • Authors: Nsabimana, J.; Nestor, U.; Girma, G.; Pamphile, N.; Zhan, D.; Tian, Z.-Q.
    Journal: ChemElectroChem
    Year: 2016

Facilitated Li⁺ Ion Transfer across the Water/1,2-Dichloroethane Interface by the Solvation Effect

  • Authors: Girum Girma
    Journal: Chemical Communications (Chem. Commun.)
    Year: 2014

 

 

Tupan Das | Experimental methods | Best Researcher Award

Mr. Tupan Das | Experimental methods | Best Researcher Award

Mr. Tupan Das is a Research Scholar and Senior Research Fellow (CSIR SRF) currently pursuing his Ph.D. in Physics at the Indian Institute of Technology (IIT) Patna. His research centers around flexible, multifunctional nanogenerator devices, with applications in self-powered sensors and sustainable energy systems. With a solid academic foundation, a trail of high-impact publications, and a growing patent portfolio, he is quickly establishing himself as a promising early-career scientist in nanotechnology and materials science.

👨‍🎓Profile

Google scholar

Scopus

📚 Early Academic Pursuits

Mr. Das laid his academic foundation at Jawahar Navodaya Vidyalayas, where he consistently performed at the top percentile. He completed his B.Sc. in Physics from Govt. Degree College Dharmanagar under Tripura University, followed by a Master’s in Physics from NIT Agartala with distinction (79%). His consistent academic success led him to IIT Patna, where he is pursuing a Ph.D. with a stellar 88.6% score, focusing on flexible polymer nanocomposites for energy harvesting.

🧪 Professional Endeavors

Throughout his doctoral journey, Mr. Das has been a recipient of the prestigious CSIR Junior and Senior Research Fellowships, awarded by the Council of Scientific & Industrial Research (CSIR), Government of India. His research spans piezoelectric, triboelectric, and hybrid nanogenerators, ferroelectric materials, and energy storage devices, with a hands-on approach in both experimental fabrication and device testing.

🔬 Research Focus and Contributions

His Ph.D. thesis titled “Flexible and Multifunctional Polymer Nanocomposite-based Nanogenerator Devices for the Self-powered Sensor Applications” reflects his cutting-edge work in energy harvesting and sensing technologies. With over 15 high-impact peer-reviewed publications, including in Nano Energy (IF: 16.8) and Chemical Engineering Journal (IF: 13.4), he has pioneered multifunctional nanogenerators that power devices without external batteries  a leap toward self-sustainable electronics. His interdisciplinary approach, combining magnetic, dielectric, and piezoelectric properties, has also led to research on self-charging supercapacitors, memristors, and optoelectronic devices, along with a submitted patent on radiation therapy films.

🌍 Impact and Influence

Mr. Das’s work has made a visible mark on the field of applied physics and materials engineering, particularly in the domains of wearable electronics, biomedical sensors, and sustainable energy. His research not only demonstrates academic rigor but also emphasizes real-world applications  evident through presentations at international conferences like ICONN, MRSI, and AC2MP, where he has received accolades including Best Oral Presentation and 1st Position in Research Communication.

📈 Academic Citations and Visibility

With publications in high-impact journals and ongoing collaborations with senior researchers, Mr. Das’s work is gaining increasing attention in the academic community. Journals such as Nano Energy, Applied Physics Letters, and Chemical Engineering Journal ensure global visibility and citation potential, cementing his status as a rising contributor in nanotechnology research.

🛠️ Research and Technical Skills

Mr. Tupan Das possesses comprehensive expertise in advanced experimental techniques, making him a highly skilled experimentalist in the field of materials science and applied physics. His technical proficiency includes X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) for structural analysis. He is adept in fabrication techniques like Spin Coating, Electrospinning, and Hydrothermal Synthesis. Additionally, he has hands-on experience with Impedance Analysis, Ferroelectric Loop Tracing, Cyclic Voltammetry, and Planetary Ball Milling. His core strength lies in energy storage and harvesting device fabrication, especially in self-charging supercapacitors and nanogenerators, showcasing his broad technical command.

👨‍🏫 Teaching Experience

As a teaching assistant, Mr. Das has contributed to B.Tech. 1st Year Physics Labs during 2022–2023 and 2023–2024 at IIT Patna. His ability to communicate complex concepts clearly, coupled with a passion for education, makes him an effective mentor and guide to undergraduate students.

🏅 Awards and Honors

Mr. Tupan Das has received multiple prestigious accolades that underscore his scientific excellence, communication skills, and research innovation. He qualified the CSIR-UGC NET JRF with an impressive AIR 323, along with clearing GATE (2021) and IIT JAM (2018) all national-level competitive exams. He earned the Best Oral Presentation Award at AC2MP-2024, IIT Patna, and secured 1st Position in the highly competitive “My Research in 3 Minutes” contest at RSD 2024. Demonstrating innovation, he has also filed a patent on magnetic nanofiber-based radiation therapy films, further solidifying his profile as a dynamic and impactful researcher.

🌐 International Exposure

Mr. Das is selected for the NSTC-IIPP Internship Programme at Ming-Chi University of Technology, Taipei, Taiwan (2024-2025). Here, he will explore hybrid piezo-triboelectric nanogenerators for gas sensing and water harvesting  a testament to his global research impact and collaboration.

🧭 Legacy and Future Contributions

Mr. Tupan Das is positioned to become a leading researcher in next-generation energy solutions. His integrated approach to multifunctional nanomaterials aligns with future industrial and healthcare demands, especially in the IoT, wearables, and sustainable technologies domains. With plans to continue in academic research and innovation, he is expected to contribute significantly to India’s scientific and technological self-reliance.

Top Noted Publications

Flexible Piezoelectric Nanogenerator as a Self-charging Piezo-supercapacitor for Energy Harvesting and Storage Application

  • Authors: T. Das, S. Tripathy, A. Kumar, and M. Kar
    Journal: Nano Energy
    Year: 2025

The MnAl-alloy nanoparticles incorporated PVDF-based piezoelectric nanogenerator as a self-powered real-time pedometer sensor

  • Authors: T. Das, S. N. Rout, A. Dev, and M. Kar
    Journal: Applied Physics Letters
    Year: 2024

Double perovskite-based wearable ternary nanocomposite piezoelectric nanogenerator for self-charging, human health monitoring and temperature sensor

  • Authors: T. Das, M. K. Yadav, A. Dev, and M. Kar
    Journal: Chemical Engineering Journal
    Year: 2024

Multi-functional piezoelectric nanogenerator based on relaxor ferroelectric materials (BSTO) and conductive fillers (MWCNTs) for self-powered memristor and optoelectronic devices

  • Authors: T. Das, P. Biswas, A. Dev, J. Mallick, and M. Kar
    Journal: Chemical Engineering Journal
    Year: 2024

Tuning of magnetic properties of Al-doped cobalt ferrite nanofiber prepared by electrospinning technique

  • Authors: T. Das, S. Noor, Kumari, J. Mallick, A. Shukla, S. Datta, M.K. Manglam, and M. Kar
    Journal: Physica Scripta
    Year: 2023

 

Yuhui Wang | Experimental methods | Best Researcher Award

Prof. Yuhui Wang | Experimental methods | Best Researcher Award

Yanshan University | China

Professor Yuhui Wang is a distinguished academic and researcher in the field of Materials Science and Mechanical Engineering, currently serving as a Professor at the School of Mechanical Engineering, Yanshan University (YSU), China. With over two decades of research and academic experience, Professor Wang has made significant strides in understanding and innovating material microstructures for advanced industrial applications.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Professor Wang embarked on his academic journey at Yanshan University, where he earned his Bachelor of Engineering in 2003, followed by a Master’s degree in 2006, and culminated in a PhD in 2012, all in Materials Science and Engineering. His solid academic foundation laid the groundwork for his lifelong pursuit of excellence in metallurgical research and materials design.

🧑‍🔬 Professional Endeavors

Professor Yuhui Wang has demonstrated a consistent trajectory of professional growth through pivotal roles in both academic and research domains. Currently a Professor (2020–Present) at the School of Mechanical Engineering, YSU, he previously served as a Senior Researcher (2012–2019) at the National Engineering Research Center for Equipment and Technology of C.S.R., YSU, and as a Research Associate (2006–2010) at the School of Materials Science and Engineering, YSU. These positions have established him as a leader in academic research, fostering industry collaboration and integrating theoretical innovation with practical engineering applications.

🔬 Contributions and Research Focus

Professor Wang’s research is centered on the microstructure-processing-property relationships in metallic materials, aiming to design advanced materials through microstructural engineering. Since 2021, he has led pioneering work in a novel deformation method titled “Dynamic Offsets and Shear Force Adjustment Rolling (DS Rolling)”. This technique has shown promising results in grain refinement and texture homogenization in pure metals like copper (Cu) and tantalum (Ta). He employs state-of-the-art experimental techniques such as electron microscopy and X-ray diffraction, underscoring his technical expertise and commitment to methodological rigor.

🌍 Impact and Influence

With 110 published papers, including 1 Hot Paper and 2 Highly Cited Papers, Professor Wang has made an undeniable impact on the field. His work has garnered 1,860 citations, reflecting strong academic reception and influence. His H-index of 21 confirms both the quality and consistency of his research contributions over time. Moreover, he holds 40 authorized patents, including 1 U.S. patent, a testament to the practical relevance and innovation of his work in both academic and industrial settings.

📚 Academic Cites

His research outputs have appeared in top-tier journals, with frequent citations reflecting his status as a reliable source of scientific knowledge. The presence of Highly Cited Papers signifies that his work is used as a foundation for ongoing research, showcasing his role in advancing scientific frontiers.

🛠️ Research Skills

Professor Wang is recognized for his exceptional skills in experimental design, data analysis, and advanced characterization techniques. His ability to translate microstructural insights into functional engineering solutions marks him as a leading innovator in material processing. His recent focus on DS Rolling exemplifies a forward-looking research mindset, integrating novel mechanical deformation methods with practical application potential.

👨‍🏫 Teaching Experience

Professor Wang has an extensive teaching and supervision portfolio. He is currently supervising 5 PhD students, 1 postdoctoral fellow, and 9 master’s students, while having mentored 2 PhD and 10 master’s graduates in the past. His role as a mentor and educator is deeply valued, and he consistently inspires young scholars to engage with cutting-edge materials research.

🌟 Legacy and Future Contributions

Professor Yuhui Wang’s legacy is built on a foundation of scientific excellence, innovation, and mentorship. His visionary research in material processing techniques like DS Rolling, combined with his strong academic influence, ensures that he will continue to shape the next generation of materials science. His ongoing work promises advancements in sustainable materials development, industrial processing techniques, and deeper insights into the structure-property-performance nexus in metals.

Top Noted Publications

Pure copper plate achieving high synergetic strength and electrical conductivity via a novel dynamic offsets and shear force adjustment cryorolling

  • Authors: Longfei Xu, Renhao Wu, Haiming Zhang, Xin Xue, Yan Peng, Yuhui Wang, Hyoung Seop Kim
    Journal: Materials Science and Engineering: A
    Year: 2025

The improvement and verification of fluid dynamics simulation on temperature uniformity during heat treatment of ring pieces

  • Authors: Mingzhe Xu, Jinfu Zhao, Li Wang, Tengxiang Zhao, Ling Kong, Zhipeng Li, Zhixin Huang, Yuhui Wang
    Journal: Heliyon
    Year: 2024

Microstructure and mechanical properties of pure copper plate processed by novel dynamic offsets and shear force adjustment rolling

  • Authors: Longfei Xu, Kai Yu, Li Wang, Shizhao Quan, Ling Kong, Haokun Yang, Xiaodan Zhang, Yan Peng, Yuhui Wang
    Journal: Journal of Materials Research and Technology
    Year: 2024

Cryogenic toughness in a low-cost austenitic steel

  • Authors: Y. Wang, Y. Zhang, A. Godfrey, J. Kang, Y. Peng, T. Wang, N. Hansen, X. Huang
    Journal: Communications Materials
    Year: 2021

Hot-Deformation Behavior and Processing Maps of a Low-Carbon Fe-2 wt% Nb Steel

  • Authors: Wentao Luo, Pengzhan Cai, Ziyong Hou, Yuhui Wang, Ling Zhang, G.L. Wu
    Journal: Metals
    Year: 2021

Achieving high ductility in the 1.7 GPa grade CoCrFeMnNi high-entropy alloy at 77 K

  • Authors: S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang
    Journal: Materials Science and Engineering: A
    Year: 2019

 

 

Kriti Ranjan Sahu | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Kriti Ranjan Sahu | Experimental methods | Best Researcher Award

Dr. Kriti Ranjan Sahu is a distinguished physicist and academic leader, currently serving as the Head of the Department of Physics and Assistant Professor at Bhatter College, Dantan (Autonomous) in Paschim Medinipur, West Bengal, India. With a strong background in material science, applied physics, and experimental techniques, Dr. Sahu has made pioneering contributions across multiple fields of science including piezoelectric materials, superconductivity, and optical technologies.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Sahu’s academic journey began in Tickrapara Ambikyamoye High School, culminating in his B.Sc in Physics from P.K. College, Contai under Vidyasagar University in 2002. He pursued his M.Sc in Physics from G.G.D. University, Bilaspur, securing a strong academic footing with 64.39% marks in 2004. He earned his PhD in 2016 from Jadavpur University, working under Prof. Dr. Udayan De (Retd. Senior Scientist at VECC, Kolkata) with a thesis focused on “Study of Some Piezoelectric and Other Oxides and of Their Polymeric Composites for Applications“.

🧑‍🏫 Professional Endeavors

Dr. Sahu began his teaching career as a Lecturer and HoD in Egra S.S.B. College in 2005, later transitioning to Bhatter College in 2019 as a full-time Assistant Professor and Department Head. With over 19 years of academic service, he is a veteran educator deeply committed to student-centric scientific inquiry and interdisciplinary learning.

🧪 Contributions and Research Focus

Dr. Sahu has spearheaded numerous innovative research projects and groundbreaking discoveries. He developed a novel and safe technique for preparing orthorhombic PbNb₂O₆ piezoelectric material in 2014, widely used in nuclear imaging sensors. In 2020, he reported a surprising ~8°C enhancement in the superconducting transition temperature of Fe-based superconductors due to Ar⁶⁺ ion beam irradiation. In 2022, he invented a new laser-based experimental method for measuring refractive indices in solid materials, suitable for undergraduate laboratories. He also discovered a new natural cellulosic fiber from Cyperus compactus (2023), and synthesized high-quality Na₂O–ZnO–TeO₂ glasses for optical communication (2020–2023).

🌐 Impact and Influence

Dr. Sahu’s work has gained national and international recognition. His cutting-edge research has been published in top-tier journals like Physica C, Carbohydrate Polymer Technologies, Glass Physics and Chemistry, and Journal of Physics and Chemistry of Solids. His findings in superconductivity and piezoelectric materials have laid foundational work for future advancements in sensor technology, nuclear applications, and sustainable electronics.

📚 Academic Cites and Publications

Dr. Sahu has made extensive contributions to peer-reviewed literature with numerous publications across Q1 to Q4 journals. Notably, he reported a remarkable 50% increase in superconducting critical temperature (Tc) due to ion implantation, published in Physica C (2025). His work on the characterization of a new natural cellulosic fiber appeared in Carbohydrate Polymer Technologies (2023). He also introduced a laser-based refractive index measurement technique featured in The Physics Teacher (2022). Additionally, Dr. Sahu has co-authored several papers on glass materials, organic solar cells, and the effects of ion irradiation, showcasing his broad research expertise.

🧠 Research Skills

Dr. Sahu possesses a wide range of research skills encompassing material synthesis, including piezoelectrics, superconductors, EMI shielding composites, and glass materials. He is proficient in advanced characterization techniques such as XRD, UV-Vis spectroscopy, SEM, TEM, FTIR, DSC, DTA, TGA, impedance analysis, and vector network analysis (VNA). His expertise also extends to device fabrication, particularly in creating organic solar cells. Additionally, Dr. Sahu has conducted numerous irradiation experiments using gamma rays and ion beams at renowned facilities like UGC-DAE, IUAC, and SAMEER, reflecting his strong interdisciplinary research capabilities.

👨‍🏫 Teaching Experience

Dr. Sahu has nearly two decades of teaching experience. He has been instrumental in integrating innovative lab experiments, interdisciplinary research modules, and undergraduate research projects into college curricula. His initiative, BASIS (Bengal Academic Society for Interactive Sciences), has helped UG/PG students showcase poster-based research across colleges.

🏆 Awards and Honors

  • 🥇 International Research Award (2020) by RULA and World Research Council for outstanding work on piezoelectric spectroscopy.

  • 📜 Certificate of Publication from Thermochimica Acta for significant findings on Nb₂O₅ phase in PbNb₂O₆ formation.

  • 🧾 Life Member of Indian Association of Physics Teachers (IAPT).

📝 Editorial Roles and Peer Review

  • Associate Editor: Bhatter College Journal of Multidisciplinary Studies, since 2023.

  • Editorial Member: International Journal of Materials Science and Applications (USA).

  • Reviewer: International Journal of Energy Research, Material Science Research India.

🔬 Legacy and Future Contributions

Dr. Kriti Ranjan Sahu continues to inspire scientific curiosity through poster-based symposiums, interactive webinars, and hands-on experimental training under the umbrella of BASIS. His commitment to low-cost science education, research democratization, and young investigator mentorship ensures a lasting impact on the next generation of physicists and applied researchers. Looking ahead, Dr. Sahu aims to bridge research with industry, focusing on green technologies, high-Tc superconductors, and materials for next-gen optics and electronics.

Top Noted Publications

Superconducting Single Crystals Show About 50% Increase of the Superconducting Critical Temperature after Ar Ion Implantation

  • Authors: Sahu, K.R.; Wolf, T.; Mishra, A.K.; Chakraborty, K.R.; Banerjee, A.; Ganesan, V.; De, U.
    Journal: SSRN (Other)
    Year: 2025

Characterization of new natural cellulosic fibers from Cyperus compactus Retz. (Cyperaceae) Plant

  • Authors: Bhunia, A.K.; Mondal, D.; Sahu, K.R.; Mondal, A.K.
    Journal: Carbohydrate Polymer Technologies and Applications
    Year: 2023

Enhancement of Optical and Electrical Properties of Pr³⁺ Doped Na₂O–ZnO–TeO₂ Glass Materials

  • Authors: Mirdda, J.N.; Mukhopadhyay, S.; Sahu, K.R.; Goswami, M.N.
    Journal: Glass Physics and Chemistry
    Year: 2023

Modification of Optical Bandgap and Formation of Carbonaceous Clusters Due to 1.75 MeV N⁵⁺ Ion Irradiation in PET Polymers and Search for Chemical Reaction Mechanisms

  • Authors: Prasad, S.G.; Lal, C.; Sahu, K.R.; De, U.
    Journal: Biointerface Research in Applied Chemistry
    Year: 2023

Ultrastructural and Spectroscopic Analysis of Lignin of Stone Cells in Mimusops elengi L. (Sapotaceae) Fruit Mesocarp

  • Authors: Khatun, M.; Sahu, K.R.; Mondal, A.K.
    Journal: Biointerface Research in Applied Chemistry
    Year: 2023

 

 

Steephenraj Arokiyasamy | Experimental methods | Best Researcher Award

Dr. Steephenraj Arokiyasamy | Experimental methods | Best Researcher Award

Post Doctoral Fellow at Rhodes University | South Africa

Dr. Steephenraj A. is a highly motivated and accomplished Postdoctoral Fellow in Physics at Rhodes University, South Africa, with a strong academic foundation and robust research expertise. He completed his Ph.D. in Physics from the prestigious SSN Research Centre, affiliated with Anna University, Chennai, with a focus on Nonlinear Optical (NLO) materials and third harmonic generation applications. His academic journey is a testament to a profound dedication to science, teaching, and research excellence.

👨‍🎓Profile

ORCID

🎓 Early Academic Pursuits

Dr. Steephenraj laid his academic foundation with a B.Sc. and M.Sc. in Physics, graduating with First Class honors from A.V.C College and Poombuhar College, respectively, both affiliated with Bharathidasan University. He further pursued an M.Phil in Physics from St. Joseph’s College, Trichy, refining his interest in experimental and computational physics. These formative years shaped his strong analytical mindset and commitment to scientific inquiry.

👨‍🏫 Professional Endeavors

With a commendable academic trajectory, Dr. Steephenraj has held the position of Assistant Professor at several esteemed institutions such as Mohamed Sathak A.J. College of Engineering and St. Joseph’s College of Arts and Science, Chennai. His tenure in these roles reflects a commitment to integrating teaching with cutting-edge research, nurturing young scientific minds, and contributing to curriculum development in Physics and Computer Applications.

🔬 Contributions and Research Focus

Dr. Steephenraj’s Ph.D. thesis stands out as a substantial contribution to the field of materials science and nonlinear optics, with a special focus on imidazolium-based dicarboxylic acid derivative single crystals. His research blends experimental crystal growth techniques (like slow evaporation) with computational methods such as Density Functional Theory (DFT). The work revolves around Third Harmonic Generation (THG)—a process vital to optical imaging, telecommunications, and laser frequency conversion. His investigations into 2MIMDT, IMSU, and 2MIO crystals have uncovered significant insights into their optical, structural, and thermal behaviors.

🌍 Impact and Influence

His research has not only been published in high-impact journals like Journal of Molecular Structure, Chemical Papers, and Journal of Materials Science: Materials in Electronics, but has also been acknowledged through citations and collaborations. His work contributes meaningfully to the global understanding of nonlinear optical materials and promotes advancements in laser-based technologies.

📚 Academic Citations

Dr. Steephenraj has authored over 6 peer-reviewed journal papers, many of which are indexed in Scopus and have a respectable impact factor ranging from 1.9 to 4.0. Notable among these is his work on Imidazolium Hydrogen Succinate and 2-Methylimidazolium D-Tartrate, which have been cited by fellow researchers in the field of nonlinear optics and computational material studies.

🧪 Research & Analytical Skills

He possesses hands-on expertise in advanced scientific instrumentation and software tools such as:

  • Wilson Vickers Hardness Tester, Z-scan, UV–Visible NIR, FT-IR, SEM, TG/DTA

  • Computational Tools: Gaussian 09W, GaussView, Quantum ESPRESSO, Mercury, Crystal Explorer, Bilbao Crystallographic Server, and more.

These skills have enabled him to successfully characterize materials and simulate molecular properties to predict optical behavior with high precision.

👨‍🏫 Teaching Experience

Dr. Steephenraj has rich teaching experience spanning several years, covering both undergraduate and postgraduate curricula in Physics and Computer Applications. He is recognized for his concept-based approach, emphasizing hands-on learning, student engagement, and the integration of research with teaching. He has also guided M.Sc. and Ph.D. students, showcasing his capability as a mentor and academic leader.

🏆 Awards and Honors

His dedication to academics and research has earned him prestigious accolades such as:

  • Best Teacher Award (2022–2023) – Mohamed Sathak AJ College of Engineering.

  • Best Poster Award – Jeppiaar Engineering College (2018).

  • Resource Person for national and international conferences and faculty development programs.

These accolades reflect his outstanding performance in academia and research dissemination.

🧭 Legacy & Future Contributions

Looking ahead, Dr. Steephenraj aspires to make significant contributions in advanced materials science and optical physics, with goals aligned toward sustainable technologies and global collaborations. His long-term vision includes becoming a leading research scientist and an academic policy influencer, helping shape the future of science education and innovative research in Physics.

Publications Top Notes

Studies on the Growth, Structural, Optical and Quantum chemical investigations of 2-Methylimidazolium D-Tartrate Single Crystal for SHG applications

  • Authors: A. Steephenraj, S. Chinnasami, Rajesh Paulraj
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2022

Growth, structural, vibrational, characterization and DFT investigations of 2-methylimidazolium hydrogen oxalate dihydrate (2MIO) single crystal – towards third order NLO applications

  • Authors: A. Steephenraj, S. Chinnasami, P. Rajesh, S.S.J. Dhas
    Journal: Journal of Molecular Structure
    Year: 2023

Synthesis and optical Properties of Tin oxide thin films nanoparticles

  • Authors: A. Steephenraj, P. Rajendhiran
    Journal: Journal for Advanced Research in Applied Science

Growth of High Quality KADP Mixed Crystals Grown by Conventional and Sankaranayanan-Ramasamy (SR) Methods for Nonlinear Optical Applications

  • Authors: T.S. Franklin Rajesh, J.S. Dhas, A. Steephenraj, R. Senthamizhselvi, A. Sivakumar, R.S. Kumar, Abdulrahman I. Almansour
    Journal: Journal of Optical Materials
    Year: 2024

 2-Methylimidazolium hydrogen succinate single crystal growth and DFT insight for NLO applications

  • Authors: K. Sowmiya, A. Steephenraj, M. Avinash, R. Gunaseelan, P. Sanjay
    Journal: Journal of Molecular Physics
    Year: 2025

 

Christen Tharwat | Experimental methods | Best Researcher Award

Dr. Christen Tharwat | Experimental methods | Best Researcher Award

Researcher at National Research Centre | Egypt

Christen Tharwat is a Postdoctoral Researcher specializing in plasmonic gas sensors, graphene-based sensors, and nanotechnology for biomedical applications. With a strong academic foundation from Cairo University, he has made notable contributions in nanoparticle synthesis and environmental applications. He is recognized for his work on magnetic nanoparticles and their uses in areas such as wastewater treatment and biomedical applications. Tharwat is also actively involved in academic writing, proofreading, and manuscript submissions, further enhancing his impact in the scientific community.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Christen Tharwat’s academic journey began at Cairo University, where he obtained a Bachelor’s degree in Physics & Chemistry in 2010, followed by a Master of Science in Physics in 2014. His master’s research was centered on laser treatment of Ti-Ni alloys coated with hydroxyapatite/silver nanoparticles for biomedical applications. Tharwat then pursued a PhD in Physics at the National Institute of Laser Enhanced Sciences, Cairo University, focusing on the construction of optical sensors for environmental applications. His early academic work laid the groundwork for his extensive research in nanotechnology.

Professional Endeavors 💼

Tharwat’s professional career spans both research and teaching. As a Postdoctoral Fellow, he is engaged in cutting-edge work on plasmic gas sensors and graphene-based sensors, contributing significantly to the sensor technology field. His research at the National Research Centre, Egypt, and the American University in Cairo has equipped him with diverse expertise in nanomaterial synthesis and their industrial applications. Furthermore, his freelance academic writing and proofreading have helped him hone his skills in articulating complex scientific ideas for academic audiences.

Contributions and Research Focus 🔬

Tharwat’s research has been pivotal in advancing nanotechnology across various domains. His work on magnetic nanoparticles and their size dependence for biomedical applications has practical implications for drug delivery and bioimaging. Additionally, his work on nanoparticles for wastewater treatment demonstrates his commitment to environmental sustainability. His laser treatment techniques for biomedical alloys further underscore his contributions to improving healthcare technologies. Tharwat’s focus on graphene and plasmic gas sensors indicates his strong involvement in future-oriented research that addresses environmental and industrial challenges.

Impact and Influence 🌍

Tharwat has had a substantial impact on both the academic and industrial sectors. His work on magnetic nano-crystals for bioimaging has expanded the potential for more effective medical diagnostics, while his contributions to wastewater treatment provide practical solutions to environmental pollution. The development of optical sensors for environmental monitoring has contributed to better understanding and control of environmental hazards. Furthermore, his international collaborations with institutions like the Université de Picardie Jules Verne, France, have enhanced the global applicability of his research.

Academic Citations and Research Skills 📚

Tharwat has authored numerous peer-reviewed journal papers and presented his findings at international conferences. His publications include studies on magnetic nanoparticles, nanoflowers for dye removal, and silicon-based nanostructures. His research in nanomaterials and nanostructures has been cited across multiple disciplines, highlighting the versatility and impact of his work. Additionally, his proficiency in synthesizing nanoparticles, sensor fabrication, and surface modifications speaks to his technical expertise and innovation in experimental methods.

Teaching Experience 🧑‍🏫

Tharwat’s academic career also includes a strong teaching role, where he has trained and mentored undergraduate students in Solid State Physics at institutions like the American University in Cairo. His work in academic mentoring and research assistance has influenced the next generation of scientists, guiding students through complex lab equipment and research techniques. Tharwat’s ability to explain cutting-edge concepts in nanotechnology and sensor development makes him a valuable educator.

Awards and Honors 🏅

Tharwat has received recognition for his work in both academic research and innovation. He is the co-holder of international patents in nanotechnology, including one for nanoalloys for wastewater treatment and another for coated magnetic nano-crystals for bioimaging. His contributions to the field of nanomaterials have led to multiple conference papers and journal publications, earning him a prominent place among young researchers in nanotechnology and material science.

Legacy and Future Contributions 🔮

Christen Tharwat’s research legacy will likely be marked by his advancements in sensor technologies and his contributions to environmental sustainability and biomedical applications. As his work in graphene-based sensors and nanomaterial synthesis continues to evolve, he is well-positioned to shape future research in these critical areas. Moving forward, his ongoing postdoctoral work will likely focus on next-generation sensor devices and environmental monitoring systems, ensuring that his research continues to have a lasting impact on both scientific and industrial landscapes. His vision for the future includes collaborative research that bridges nanotechnology with environmental and healthcare solutions.

Publications Top Notes

Photo-degradation of water and food pathogens using cheap handheld laser

  • Authors: S Mohamed, C Tharwat, A Khalifa, Y Elbagoury, H Refaat, SF Ahmed, …
    Journal: High-Power Laser Materials Processing: Applications, Diagnostics, and …
    Year: 2025

Single step MACE for SiNWs fabrication with (Au & Ag) metals

  • Authors: A Khalifa, AAM Ahmed, C Tharwat, M El Koddosy, MA Swillam
    Journal: Nanoscale and Quantum Materials: From Synthesis and Laser Processing to …
    Year: 2025

Effect of ZnO/EAF slag doping on removal of methyl red dye (MR) from industrial waste water

  • Authors: C Tharwat, D. A. Wissa, Nadia F. Youssef
    Journal: Scientific Reports
    Year: 2024

Fabrication of crystalline silicon nanowires coated with graphene from graphene oxide on amorphous silicon substrate using excimer laser

  • Authors: MAS C Aziz, MA Othman, A Amer, ARM Ghanim
    Journal: Heliyon
    Year: 2024

CW laser beam-based reduction of graphene oxide films for gas sensing applications

  • Authors: C Tharwat, Y Badr, SM Ahmed, IK Bishay, MA Swillam
    Journal: Optical and Quantum Electronics
    Year: 2024

 

 

Changjun Chen | Experimental methods | Best Researcher Award

Prof. Changjun Chen | Experimental methods | Best Researcher Award

Director at Soochow University | China

Prof. Changjun Chen is a renowned expert in laser materials processing and holds a professorship at the Laser Processing Research Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou, China. He is also the Secretary General of both the Laser Industry Alliance of G60 S&T Innovation Valley of Yangtze River and the Jiangsu Province Laser Innovation. Prof. Chen’s research spans a variety of cutting-edge applications, particularly in laser welding, laser metal deposition, laser-assisted material removal, and surface modification. He has significantly contributed to the development of new techniques in these areas that are pivotal for industrial applications, especially in aerospace, automotive, and energy sectors.

👨‍🎓Profile

Scopus 

ORCID

📚 Early Academic Pursuits

Prof. Chen began his academic journey by obtaining his Bachelor’s degree (BE) in 2000 from Northeastern University in Shenyang, China. He further advanced his education by earning a Ph.D. in 2007 from the Institute of Metal Research, Chinese Academy of Sciences, specializing in materials science. His early academic pursuits laid a strong foundation for his later contributions to laser processing and materials science.

💼 Professional Endeavors

Prof. Chen’s professional career began in 2007 when he joined Wuhan University of Science and Technology, where he served as an associate professor until 2011. His career took a major leap when he joined Soochow University in 2011, attaining the title of Professor. His academic journey also includes a significant research visit to Columbia University in 2013-2014, supported by the China Scholarship Council. This international exposure has allowed him to collaborate and interact with leading researchers across the globe.

🔬 Contributions and Research Focus

Prof. Chen’s research is focused on laser materials processing and its industrial applications. His group explores a range of cutting-edge topics, including:

  • Laser Metal Deposition: Particularly for superalloys and high-strength steels like high-speed steel, which are essential for both remanufacturing and manufacturing processes.

  • Laser-Forming of Metallic Foam: For applications in aerospace and automotive industries, focusing on shock absorption, weight reduction, and sustainability.

  • Laser Cladding for Gas Turbines: Optimizing superalloys for use in extreme environments.

  • Laser Welding/Sealing of Glass to Metal/Alloy: A highly specialized area of industrial processing.

His group’s novel experimental setups, combined with materials characterization and theoretical/numerical models, aim to improve quality and productivity in manufacturing processes.

🌍 Impact and Influence

Prof. Chen’s work has had a profound impact on both academia and industry. His research in laser processing has directly contributed to increased productivity, improved quality, and enhanced efficiency in manufacturing and remanufacturing industries. Prof. Chen’s involvement in laser innovation not only benefits industrial applications but also supports sustainable practices, notably through the development of metal foams for weight reduction in transportation and aerospace sectors.

📑 Academic Cites

With over 200 peer-reviewed papers published, Prof. Chen’s work is highly regarded in the scientific community. His contributions have earned him significant recognition, with over 100 of these papers cited in SCI-indexed journals. His publications reflect his deep expertise in materials science and laser processing technology.

🛠️ Research Skills

Prof. Chen’s research is characterized by his innovative approach to laser material interactions, which involves a balance of theoretical investigation and hands-on experimentation. His skills in materials characterization, numerical simulations, and process optimization have enabled him to make significant advancements in laser welding, cladding, and deposition processes. Furthermore, his expertise in foam shaping via laser forming has contributed to the development of sustainable manufacturing techniques for industries like automotive and aerospace.

🏅 Teaching Experience

In addition to his research, Prof. Chen has a long history of mentoring students and professionals in the field of materials science and laser processing. As a professor at Soochow University, he has played a pivotal role in shaping the careers of countless graduate and post-graduate students. His teaching style emphasizes the integration of theoretical knowledge with practical application, ensuring that his students are well-prepared for careers in both academia and industry.

🌱 Legacy and Future Contributions

Prof. Chen’s work has laid a solid foundation for future advancements in laser processing technologies. His contributions to sustainable manufacturing through laser-assisted foam shaping and metal deposition are expected to shape the future of the aerospace, automotive, and energy industries. His research group continues to push the boundaries of what is possible in laser-based manufacturing, and his global collaborations ensure that his influence will continue to grow, benefiting industries worldwide.

Publications Top Notes

Effect of composite adding Ta and Mo on microstructure and properties of W-Mo-Cr high-speed steel prepared by laser metal deposition

  • Authors: M. Zhang, C. Chen (Changjun)
    Journal: Applied Physics A: Materials Science and Processing
    Year: 2025

The influence of anodization on laser transmission welding between high borosilicate glass and TC4 titanium alloy

  • Authors: L. Li (Lei), C. Chen (Changjun), C. Li (Chunlei), C. Tian (Chen), W. Zhang (Wei)
    Journal: Optics and Laser Technology
    Year: 2025

Effect of High-Temperature Oxidation on Laser Transmission Welding of High Borosilicate Glass and TC4 Titanium Alloy

  • Authors: M. Xu (Mengxuan), C. Chen (Changjun), J. Shao (Jiaqi), M. Zhang (Min), W. Zhang (Wei)
    Journal: Journal of Materials Engineering and Performance
    Year: 2025

Comparative Study of the Effects of Different Surface States During the Laser Sealing of 304 Steel/High-Alumina Glass

  • Authors: C. Chen (Changjun), B. Bao (Bei), J. Shao (Jiaqi), M. Zhang (Min), H. Liu (Haodong)
    Journal: Coatings
    Year: 2025

Effects of Different Surface Treatment Methods on Laser Welding of Aluminum Alloy and Glass

  • Authors: C. Chen (Changjun), L. Li (Lei), M. Zhang (Min), W. Zhang (Wei)
    Journal: Coatings
    Year: 2024

 

Dong Wang | Experimental methods | Best Researcher Award

Mr. Dong Wang | Experimental methods | Best Researcher Award

Professor at Shandong University of Technology | China

Wang Dong, is a highly accomplished academic and researcher. He currently serves as a professor at the School of Materials Science and Engineering at Shandong University of Technology. Wang Dong is also a doctoral supervisor and holds several key positions, including Secretary of the Party Branch of the Engineering Ceramics Research Institute, Vice President, and Vice President of Science and Technology at Shandong Sina New Material Technology Co., Ltd. He is the leader of the “Youth Innovation Team Plan” of Shandong University of Higher Learning. His academic journey is supported by his extensive publications, research, and contributions to materials science, especially in energy storage devices and functional materials.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Wang Dong began his academic journey at Harbin Institute of Technology (HIT), where he completed his Bachelor’s degree in 2011, followed by a Master’s degree in 2013. Afterward, he earned his Doctoral degree at HIT in 2018. During his time at HIT, his passion for materials science and energy storage materials began to take root, which shaped his career direction.

Professional Endeavors 💼

In 2018, Wang Dong took on the role of Professor and Ph.D. Supervisor at Shandong University of Technology, where he currently oversees a dynamic research team. Apart from his academic duties, he is actively involved in various industry collaborations, such as his leadership role at Shandong Sina New Material Technology Co., Ltd. Wang’s involvement in science and technology extends to presiding over projects funded by significant national and provincial funds, including the National Natural Science Foundation and Shandong Province Natural Science Fund.

Contributions and Research Focus 🔬

Wang Dong’s research areas focus on the development of energy storage devices and key materials, with an emphasis on functional inorganic non-metallic materials. His expertise covers materials science, nanomaterials, capacitive deionization, and electrochemical storage, particularly in the context of lithium-ion batteries and electrode materials. Wang has successfully led seven science and technology projects and published 28 SCI papers as the first or corresponding author. His work has contributed to innovative breakthroughs in high-performance energy storage technologies, including developing novel anode materials and advanced nano-architectures.

Impact and Influence 🌍

Wang Dong has made a significant impact in both academic circles and industrial applications. His research on energy storage materials has not only advanced scientific understanding but also influenced the development of practical solutions in the energy sector. With eight invention patents to his name, Wang’s work directly supports technological advancements that can lead to sustainable solutions in energy storage and environmental conservation.

Academic Citations 📑

Wang Dong’s publications have garnered widespread recognition. His research articles are highly cited across multiple academic journals, particularly in the fields of materials science, nanotechnology, and energy storage systems. His publications in high-impact journals such as Nano Research, Rare Metals, and Journal of Colloid and Interface Science have contributed significantly to advancing the scientific community’s understanding of nanomaterials and their applications in energy storage.

Research Skills and Expertise 🔧

Wang Dong is recognized for his exceptional research skills in material synthesis, characterization techniques, and innovative design of nano-materials. His approach combines both theoretical modeling and experimental research to explore new materials and their applications. His hands-on expertise in nano-engineering, structural regulation, and electrochemical testing has earned him respect among peers and established his reputation as a leader in his field.

Teaching Experience 📚

As a Ph.D. supervisor, Wang Dong has contributed significantly to the academic growth of his students, fostering the development of the next generation of scientists. He has mentored numerous graduate students and researchers, guiding them through complex projects in materials science and energy storage. His teaching philosophy emphasizes critical thinking, innovation, and hands-on learning, providing students with a comprehensive understanding of both fundamental principles and cutting-edge technologies.

Awards and Honors 🏆

Throughout his career, Wang Dong has earned numerous accolades for his scientific achievements and contributions to the field of materials science. These include recognition for his patent filings, research excellence, and leadership roles in high-profile projects. His academic and industry achievements have earned him several awards, including honors from both Shandong University of Technology and national scientific bodies.

Legacy and Future Contributions 🔮

Wang Dong’s future research endeavors are poised to make significant contributions to the sustainable development of energy storage technologies. His ongoing work promises to lead to innovations that can address global energy challenges, contributing to green technologies and climate change mitigation. As he continues to lead research teams and mentor future scientists, his legacy in materials science will inspire further breakthroughs in nanotechnology and renewable energy solutions.

Publications Top Notes

Photovoltaic waste silicon powder-engaged construction of silicon/graphite nanosheet/carbon composite microspheres for lithium-ion batteries anodes

  • Authors: Y. Li, D. Wang, X. Wang, D. Wang, G. Wen
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2025

Application of carbon-based MOF derived Fe/C composites toward excellent microwave absorption

  • Authors: X. Xu, X. Li, H. Yang, X. Huang, R. Zhang, D. Wang, G. Wen
    Journal: Materials Science and Engineering B
    Year: 2025

Electrical discharge machinable intra/inter type B4C composites with enhanced mechanical properties by two-step reactive spark plasma sintering

  • Authors: Y. Zhang, X. Huang, D. Wang, X. Ma, S. Ran
    Journal: Journal of the European Ceramic Society
    Year: 2025

Unraveling the chloride ion capture capability of nitrogen-doped porous carbon for capacitive deionization and desalination battery

  • Authors: H. Yang, R. Zhang, Z. Liu, G. Wen, D. Wang
    Journal: Chemical Engineering Journal
    Year: 2024

Multi-dimensional, multi-interface Fe3C/carbon sheets/carbon tubes nanoarchitecture towards high-performance microwave absorption

  • Authors: X. Xu, R. Zhang, X. Li, X. Huang, G. Wen, D. Wang
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    Year: 2024