Hoc Nguyen | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Hoc Nguyen | Computational Methods | Best Researcher Award

Senior Lecturer at Hanoi National University of Education | Vietnam

Nguyen Quang Hoc D, Assoc. Prof. PhD, is a distinguished academic and researcher in the field of Theoretical Physics. He currently holds the position of High-ranking Lecturer at the Department of Theoretical Physics, Faculty of Physics, at the Hanoi National University of Education, where he has contributed extensively to both teaching and research since 2009. His academic journey reflects a deep commitment to physics, spanning over decades of study and experience in solid-state physics, theoretical physics, and mechanical properties of materials.

👨‍🎓Profile

ORCID

Early Academic Pursuits 🎓

Nguyen Quang Hoc D embarked on his academic career with a solid foundation in solid-state physics, earning his Engineer degree from Hanoi University of Technology in 1982. His deep interest in theoretical physics led him to pursue advanced studies at the Hanoi National University of Education, where he completed his Master’s degree in Theoretical Physics in 1989 and later achieved his PhD in 1994, further honing his expertise in the field.

Professional Endeavors 💼

His professional career began in 1983 at the College of Teacher Training (now Haiphong University), where he served as a Lecturer and Head of the Physical Laboratory until 1994. Later, he joined the Institute of Nuclear Science and Technique, VINATOM in 1994, contributing as a Researcher. In 1997, he transitioned to the Department of Scientific Management, Faculty of Physics at Hanoi National University of Education, where he took on roles as an Expert and Principal Lecturer until he became an Associate Professor in 2009. Since 2016, he has remained in his current capacity as a High-ranking Lecturer at the university.

Contributions and Research Focus 🔬

Prof. Nguyen Quang Hoc D has focused much of his research on mechanical and thermodynamic properties of metals and interstitial alloys, particularly through the statistical moment method. His work has provided valuable insights into the transport properties of superconductors and how artificial nanostructures can influence these properties. His research has significant implications in materials science, particularly in understanding how nanostructures can improve the performance of superconductors in real-world applications.

Impact and Influence 🌍

With a career spanning more than three decades, Assoc. Prof. Nguyen Quang Hoc D has made lasting contributions to both academic research and teaching. His work on superconductors and nanostructure materials has advanced our understanding of the mechanical and thermodynamic properties of advanced materials. His findings have opened the door for further studies in nanotechnology and material science, positioning him as a leading figure in the development of advanced materials in the Vietnamese academic community.

Academic Citations 📚

Prof. Nguyen Quang Hoc D has earned recognition for his work, resulting in numerous academic citations and publications in international journals related to materials physics. His contributions to the field of theoretical physics have significantly impacted the understanding of interstitial alloys, superconductivity, and the behavior of metals under extreme conditions, making him a respected authority in his field.

Research Skills 🧠

Assoc. Prof. Nguyen Quang Hoc D possesses advanced research skills in statistical methods, materials characterization, and nanotechnology. His expertise includes the application of the statistical moment method to study the thermodynamic behavior of materials, allowing him to analyze and predict the mechanical properties of metals and alloys under various conditions. He has also worked on superconductivity, making contributions to transport properties and the influence of nanostructure pinning on type-II superconductors.

Teaching Experience 👨‍🏫

Assoc. Prof. Nguyen Quang Hoc D has a wealth of teaching experience, spanning over two decades at the Hanoi National University of Education. He has taught a range of undergraduate and graduate courses in theoretical physics and solid-state physics, providing students with foundational knowledge while also challenging them with cutting-edge concepts in the field. His role as a mentor and principal lecturer has helped shape the next generation of physicists and scientists in Vietnam.

Awards and Honors 🏅

Throughout his career, Assoc. Prof. Nguyen Quang Hoc D has been the recipient of various awards and honors in recognition of his contributions to the field of physics. His dedication to both research and teaching has earned him respect within the academic community, and he continues to inspire those around him with his innovative research and commitment to excellence.

Legacy and Future Contributions 🌱

As Assoc. Prof. Nguyen Quang Hoc D continues his work at Hanoi National University of Education, his legacy remains rooted in his innovative research, teaching dedication, and academic leadership. Moving forward, he is expected to continue influencing the field of material science, particularly in the realms of superconductivity and nanotechnology. His future contributions will undoubtedly lead to advancements in the understanding of metals, alloys, and superconductive materials, strengthening the scientific community in Vietnam and beyond.

Publications Top Notes

On the Melting of Crystal Under Compression: SMM Fundamental Theory and its Application to Laser Materials Processing

  • Authors: Nguyen Quang Hoc, Le Hong Viet
    Journal: Transactions of the Indian Institute of Metals
    Year: 2025

Theoretical predictions of thermodynamic properties, elastic deformation, HCP-FCC structural phase transition and melting of iron at high temperatures up to 18000 K and high pressures up to 4000 GPa

  • Authors: Nguyen Quang Hoc, Nguyen Duc Trung, Hua Xuan Dat, Le Thu Lam
    Journal: Physics Letters A
    Year: 2025

Correction: Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Quang Hoc Nguyen, Nhi Quynh Ngo, Thi Mai Dao, Cong Vien Tran, Thi Thu Tra Lai, Thi Van Anh Le, Thi Thuy An Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Thermodynamic properties of perovskite MgSiO3 with cubic structure under extreme conditions

  • Authors: Hoc Quang Nguyen, Nhi Quynh Ngo, Mai Thi Dao, Vien Cong Tran, Tra Thi Thu Lai, Anh Thi Van Le, An Thi Thuy Nguyen
    Journal: The European Physical Journal B
    Year: 2024

Study on Remelting of Crystal Under Extreme Conditions

  • Authors: Hoc Quang Nguyen, Huyen Thanh Thi Tran, Nhi Quynh Ngo, Mai Thi Dao, Phong Khac Nguyen
    Journal: Transactions of the Indian Institute of Metals
    Year: 2024

 

 

Chuhui Zhang | Machine Learning in Physics | Best Researcher Award

Mr. Chuhui Zhang | Machine Learning in Physics | Best Researcher Award

Nanjing University of Information Science and Technology | China

Chuhui Zhang is a master’s degree candidate at Nanjing University of Information Science & Technology, where he studies Big Data Science and Technology in a Sino-foreign collaboration program. His research focuses on laser system development and intelligent control, specifically in laser system design and control algorithm development. Originally from Wuxi, Jiangsu, he has consistently demonstrated an aptitude for both academic and practical contributions in the field of optical systems.

👨‍🎓Profile

ORCID

🎓 Early Academic Pursuits

Zhang’s academic journey began at Jiangsu University, where he earned his Bachelor’s degree in Software Engineering. During his undergraduate years, he distinguished himself with his exceptional leadership and academic achievements, earning accolades such as Three Good Students, Outstanding Student Cadre, and the Outstanding Graduate recognition. He also obtained the CET-6 certification, marking his proficiency in the English language. These early years were formative in shaping his technical skills and research interests in fields such as control algorithms and optical systems.

🛠️ Professional Endeavors

Since 2023, Zhang has been engaged in cutting-edge laser technology projects through his work on the National Natural Science Foundation of China project. His work on high-repetition rate, high-energy mid-infrared picosecond lasers focuses on laser design, time-frequency domain stability control, and ultrafast process measurement. He has also worked on green pulsed laser development and picosecond laser advancements, demonstrating a wide range of expertise across laser systems and optical technologies. Zhang’s technical contributions are evident in his work developing mode-locked fiber lasers, self-starting erbium-doped lasers, and hollow-core anti-resonant fibers.

🔬 Contributions and Research Focus

Zhang’s research focus is primarily on laser system development and intelligent control. His notable contributions include:

  • Developing advanced laser systems such as passively mode-locked ultrafast fiber lasers based on nonlinear polarization rotation.
  • Designing innovative fibers like hollow-core anti-resonant fibers, with a focus on mid-infrared applications.
  • Implementing machine learning algorithms like Particle Swarm Optimization and BFGS optimization to improve mode-locking and control.
  • Utilizing deep learning frameworks such as Pytorch, TensorFlow, and Sklearn to optimize and control ultrafast laser systems.

These projects aim to address some of the most challenging technological gaps in laser science, with an emphasis on achieving higher energy outputs and improved laser performance.

🌍 Impact and Influence

Zhang’s work in the field of laser technology has the potential to impact multiple industries, including medical imaging, communications, and scientific research. His development of high-power green pulsed lasers and mode-locked fiber lasers has the ability to transform applications in microscopy, biomedical imaging, and optical communications. The invention patents and published research in respected journals, such as Infrared Physics & Technology, showcase Zhang’s growing influence in the laser community and his contributions to cutting-edge innovations in optical technology.

🧑‍🏫 Research Skills

Zhang has developed a comprehensive skill set in:

  • Optical system design, including system construction and optical path debugging.
  • Advanced simulation tools, including COMSOL, Matlab, and SolidWorks for fiber laser design.
  • Deep learning and machine learning skills with Pytorch, TensorFlow, and Sklearn.
  • Practical laboratory experience with instruments such as laser pump sources, spectrometers, and oscilloscopes.

These technical skills equip Zhang to independently handle complex laser system development and research experimentation.

🏆 Awards and Honors

Zhang’s exceptional academic performance has been recognized through various honors, including:

  • Outstanding Freshman Scholarship and Third-class Scholarship at Nanjing University of Information Science & Technology.
  • Gold Award in the Mathematical Modeling Competition.
  • Gold Medal in the National International College Student Innovation Competition (2024).
  • Outstanding Graduate recognition at Jiangsu University. These awards underscore his academic excellence and research potential.

🏅 Legacy and Future Contributions

Looking forward, Zhang’s research legacy is set to further impact the field of laser system development. His focus on intelligent control algorithms and high-performance lasers offers promising solutions to high-energy laser applications and optical communication systems. In the future, Zhang is expected to continue pushing the boundaries of laser technology, with the potential to influence not only academic and research sectors but also industry applications. With an increasing number of patents and publications, Zhang’s future contributions are likely to shape the trajectory of optical sciences and laser engineering.

Publications Top Notes

Intelligent controllable ultrafast fiber laser via deep learning and adaptive optimization algorithm

  • Authors: Chuhui Zhang, Pengfei Xiang, Wei Zhu, Chen Chen, Xueming Liu
  • Journal: Infrared Physics & Technology
  • Year: 2024