Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Dr. Quynh Anh Thi Nguyen | Computational Methods | Best Researcher Award

Researcher at University of Ulsan | South Korea

Quynh Anh Thi Nguyen is a doctoral researcher at the University of Ulsan (UOU), South Korea, where she is pursuing a Ph.D. in physics under the supervision of Prof. Sung Hyon “Sonny” Rhim. Her research primarily focuses on spintronics and first-principles calculations in tungsten (W) alloys. With a strong academic background, she has excelled in her field, maintaining a GPA of 4.17/4.5 during her doctoral studies and a similar academic achievement in her undergraduate studies.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Nguyen’s academic journey began at Hanoi National University of Education (HNUE), Vietnam, where she completed her Bachelor’s degree in Physics with a thesis on the melting behavior of substitution alloys under pressure. During her undergraduate years (2013-2017), she was consistently ranked as an excellent student and earned recognition in scientific conferences. Her academic foundation set the stage for her future exploration in computational physics and materials science.

💼 Professional Endeavors

Since 2017, Nguyen has been pursuing her Doctoral degree at the University of Ulsan (UOU), South Korea. Under the mentorship of Prof. Sung Hyon Rhim, her research is centered on the study of spintronics in W alloys and the magnetic properties of Heusler compounds. She has delved into critical aspects of spin Hall conductivity, orbital Hall conductivity, and magnetism, contributing to the understanding of materials used in next-generation electronic devices like spintronic sensors and memory devices.

Contributions and Research Focus 🔬

Quynh Anh’s research mainly explores the Spin Hall conductivity and orbital Hall effects in various materials, including transition metals, Heusler compounds, and tetragonal alloys. Her work on spintronics—specifically related to the spin-orbit torque efficiency of materials like β-W heterojunctions—has led to several high-impact publications. One of her major contributions is the study of the spin Hall conductivity in W-Si alloys, which has significant implications for spintronic devices and energy-efficient electronics.

Her current research includes W-N alloys, and the impact of Ti substitution on β-W, both of which are preparing for publication.

Impact and Influence 🌍

Quynh Anh’s work is making a significant impact on the field of spintronics and material physics, especially with her first-principles calculations on the properties of W alloys. By exploring magnetism and conductivity in alloys, she is contributing to the development of advanced materials with better performance in electronics and magnetic devices. Her research aids in the creation of energy-efficient technologies and high-performance electronic components, positioning her as a leading researcher in her field.

Research Skills 💻

Quynh Anh possesses a strong set of technical skills that aid her research, including expertise in software such as Photoshop, Origin, Matlab, Python, and advanced tools like VASP, Wannier90, and OpenMx for computational physics. These skills have enabled her to conduct first-principles calculations and detailed simulations, giving her a deep understanding of material properties and quantum phenomena.

Awards and Honors 🏆

Quynh Anh’s work has been widely recognized:

  • Best Poster Award at the International Conference on Magnetic and Superconducting Materials (2018) in Seoul, Korea.
  • Multiple Excellent Student awards during her undergraduate years.
  • Third Prize at the Student Conference Science Research (2017).

These honors underscore her exceptional academic performance and research contributions.

Legacy and Future Contributions 🌟

With her expertise in spintronics and material physics, Quynh Anh is set to continue making groundbreaking contributions to the field of advanced materials. Her research on spin Hall conductivity, orbital Hall effects, and magnetism will likely pave the way for future innovations in energy-efficient electronics and next-generation magnetic devices. Quynh Anh’s legacy will undoubtedly inspire future scientists to explore the untapped potentials of transition metal alloys and spintronic materials, ensuring her lasting impact in the world of physics and material science.

Publications Top Notes

Ti-alloyed β-W heterojunctions exhibiting spin-orbit torque switching at a wide operating temperature range

  • Authors: J. Lee, Q. A. T. Nguyen, D. Kim, S. H. Rhim, Y. K. Kim
    Journal: Applied Surface Science
    Year: 2025

Synergetic Modulation of Electronic Properties of Cobalt Oxide via “Tb” Single Atom for Uphill Urea and Water Electrolysis

  • Authors: S. Ajmal, A. Rasheed, W. Sheng, G. Dastgeer, Q. A. T. Nguyen, P. Wang, …
    Journal: Advanced Materials
    Year: 2025

Unlocking electrocatalytic dynamics with anti-MXene borides monolayers for nitrate reduction

  • Authors: T. H. Ho, Q. A. T. Nguyen, B. T. T. Le, S. G. Kim, W. Q. Bui
    Journal: Applied Surface Science
    Year: 2024

Spin Hall Conductivity of W100-xSix Alloys in A15 Structure: A Comprehensive Study

  • Authors: Q. A. T. Nguyen, S. H. Rhim
    Journal: Journal of Magnetics
    Year: 2024

Orbital-engineered anomalous Hall conductivity in stable full Heusler compounds: a pathway to optimized spintronics

  • Authors: Q. A. T. Nguyen, T. H. Ho, S. G. Kim, A. Kumar, V. Q. Bui
    Journal: Journal of Materials Chemistry C
    Year: 2024

 

 

 

Jing Xie | Data Analysis Techniques | Best Researcher Award

Dr. Jing Xie | Data Analysis Techniques | Best Researcher Award

Peking University | China

Dr. Jing Xie is a highly accomplished researcher currently working as a Research Assistant Fellow in the Department of Geophysics at Peking University, Beijing, China. With a Ph.D. in Geological Resources and Geological Engineering from Central South University, his expertise lies at the intersection of engineering and environmental geophysical exploration, focusing on self-potential surveys, electrical resistivity tomography, numerical simulation, inversion, and physical simulation experiments. His academic career has been marked by cutting-edge contributions in geophysics, specifically in the study of self-potential data and deep learning algorithms.

👨‍🎓Profile

Scopus

Orcid

📚 Early Academic Pursuits

Dr. Xie embarked on his academic journey by obtaining a Bachelor’s degree in Exploration Technology and Engineering from Chengdu University of Technology (2013-2017). Driven by his passion for geophysics, he pursued a Doctoral degree at Central South University, specializing in Geological Resources and Geological Engineering. This solid educational foundation laid the groundwork for his innovative research in the fields of geophysical exploration and data inversion techniques.

💼 Professional Endeavors

After completing his doctoral studies, Dr. Xie became a Research Assistant Fellow at Peking University in 2023, where he continues to contribute to the field of geophysics. His professional trajectory also includes an enriching experience as a Visiting Student at Boise State University (2019-2021), where he engaged in collaborative research, expanding his knowledge and network in the global geophysical community.

🔬 Contributions and Research Focus

Dr. Xie’s research primarily revolves around self-potential surveys, electrical resistivity tomography, and numerical modeling, with a particular emphasis on inversion techniques and deep learning algorithms. Notably, he has worked on real-time monitoring of phenomena such as metal anodizing corrosion, underground fluid migration, and seepage detection in earth-filled dams. His work contributes to environmental monitoring, engineering geophysics, and natural resource exploration, offering practical solutions to complex challenges.

Dr. Xie’s deep learning algorithm for locating contaminant plumes from self-potential data is one of his significant contributions, showcasing his innovative approach to addressing real-world issues in geophysical exploration.

🌍 Impact and Influence

Dr. Xie’s work has already begun to leave a significant mark on the field of geophysics. His contributions to self-potential measurements, deep learning applications, and real-time monitoring systems have had a lasting impact on environmental and engineering geophysical exploration. His research is actively shaping future practices in mineral exploration, seepage detection, and soil petrophysical property estimation, providing innovative solutions to longstanding challenges in geophysics and engineering.

📈 Academic Cites

Dr. Xie’s work is widely recognized in the geophysics community, with over 20 publications in leading scientific journals such as IEEE Transactions on Geoscience and Remote Sensing, Geophysical Prospecting, and Chinese Journal of Geophysics. His influential publications include works on 3D resistivity modeling, time-lapse inversion techniques, and geobattery systems, among many others. This high citation count reflects the relevance and importance of his research contributions.

🛠️ Research Skills

Dr. Xie possesses a comprehensive skill set, excelling in numerical modeling, data inversion, and simulation experiments. His expertise in self-potential measurements, electrical resistivity tomography, and deep learning techniques has enabled him to develop novel algorithms for data analysis, advancing the state of the art in geophysical exploration. Additionally, he is proficient in 3D modeling, finite-infinite element coupling, and particle filtering, techniques that he applies in both laboratory and field settings.

🎓 Teaching Experience

Though Dr. Xie is primarily focused on research, he also has valuable teaching experience. As a research assistant fellow, he contributes to graduate-level courses in geophysics and geotechnical engineering, helping to shape the next generation of geophysical researchers. His academic expertise also allows him to mentor graduate students and young researchers, guiding them in their own research pursuits.

🌟 Legacy and Future Contributions

Dr. Xie’s future contributions to the field of geophysics are poised to further advance engineering geophysical exploration and environmental monitoring. His ongoing work on self-potential inversion techniques and numerical modeling will likely drive new innovations in natural resource exploration, seepage detection, and environmental risk management. With a strong foundation in both theoretical research and practical applications, Dr. Xie is well-positioned to leave a lasting legacy in the geophysical sciences.

Publications Top Notes

Time-lapse inversion of self-potential data through particle filtering

  • Authors: Cui, Y.-A., Peng, Y., Xie, J.
    Journal: Geophysical Prospecting
    Year: 2025

Three-dimensional analytical solution of self-potential from regularly polarized bodies in a layered seafloor model

  • Authors: Zhang, P., Cui, Y.-A., Xie, J., Liu, J.
    Journal: Geoscientific Model Development
    Year: 2024

Lab-based experiment on real-time monitoring of underground fluid migration by self-potential measurement

  • Authors: Xie, J., Cui, Y., Guo, Y.
    Journal: Acta Geophysica Sinica
    Year: 2024

Compact source inversion of self-potential data generated by geomicrobes

  • Authors: Luo, Y., Cui, Y.-A., Guo, Y., Xie, J., Liu, J.
    Journal: Journal of Applied Geophysics
    Year: 2024

Time-lapse self-potential signals from microbial processes: A laboratory perspective

  • Authors: Guo, Y., Cui, Y.-A., Zhang, C., Cao, C., Liu, J.
    Journal: Journal of Applied Geophysics
    Year: 2024