Md. Rajib Munshi | Computational Methods | Computational Science Excellence Award

Mr. Md. Rajib Munshi | Computational Methods | Computational Science Excellence Award

European University of Bangladesh | Bangladesh

Md. Rajib Munshi is an Assistant Professor and Acting Head of the Department of Physics at European University of Bangladesh (EUB). With a profound dedication to educational excellence and intellectual curiosity, he works towards cultivating creativity and higher-order thinking skills among students, promoting a deep understanding of physics and related fields. Through his strong academic background and impactful research, he continues to inspire and contribute to the advancement of scientific knowledge.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Md. Rajib Munshi began his academic journey at Jagannath University (JnU), Dhaka, where he earned his Bachelor of Science (B.Sc. Hon’s) and Master of Science (M.Sc.) in Physics with excellent grades. His academic foundation was further strengthened at the Bangladesh University of Engineering and Technology (BUET), where he is currently completing his M.Phil. in Physics, with a CGPA of 3.83. This demonstrates his commitment to excellence in learning and his passion for the field of computational science.

Professional Endeavors 💼

Md. Munshi’s career at European University of Bangladesh began in 2015, where he has held various positions in the Department of Physics, including Lecturer, Senior Lecturer, and currently as Assistant Professor. His teaching experience spans over 9 years, demonstrating his long-standing commitment to educating the next generation of physicists. He also serves as a Research Collaborator at the Nanotechnology Research Laboratory (NRL) at BUET, contributing his expertise to cutting-edge research in nanomaterials.

Contributions and Research Focus 🔬

Md. Munshi’s research focus lies in computational material science, with a particular emphasis on the use of Density Functional Theory (DFT) to predict the electronic, optical, mechanical, thermodynamic, and photocatalytic properties of various inorganic compounds. His research has led to significant advancements in the study of materials like In(X)O2, RaZrO3, and GaAgO2, with implications for applications in photocatalysis, optical devices, and energy storage.

Impact and Influence 🌍

Md. Munshi’s work is highly regarded in the scientific community, with numerous publications in high-impact journals such as Computational Condensed Matter, RSC Advances, and Heliyon. His research has garnered attention due to its innovative nature and potential real-world applications. Through his collaborative research, he has contributed to advancing material science, particularly in the areas of nanotechnology and photocatalysis.

Academic Citations 📚

His research contributions have made a significant impact, evidenced by the number of citations his work has received. With a consistent record of publishing in prestigious journals, Md. Munshi’s research is contributing to the global understanding of nanomaterials and their applications in various industries. His studies provide the foundation for future innovations in electronic and energy-efficient technologies.

Research Skills 🔍

Md. Munshi is well-versed in advanced computational methods such as DFT simulations, which he utilizes to explore and predict the properties of materials at the atomic and molecular level. His technical expertise in these computational techniques has made him an essential contributor to research that focuses on material design for photocatalysis and electronic applications. His ability to blend theoretical insights with practical research methods is one of his key strengths.

Teaching Experience 📖

With over 9 years of teaching experience, Md. Munshi has played an instrumental role in shaping the academic environment at European University of Bangladesh. His teaching philosophy is centered around nurturing critical thinking, problem-solving skills, and fostering intellectual curiosity in his students. He is known for creating an engaging learning environment that not only imparts knowledge but also encourages students to explore new concepts in physics and related fields.

Legacy and Future Contributions 🚀

Looking forward, Md. Rajib Munshi is determined to further expand his research into multidisciplinary areas, including the integration of machine learning with computational material science. His goal is to continue advancing the field of computational science and make lasting contributions to the development of sustainable materials for energy and environmental solutions. As a leader and mentor, he aspires to inspire future researchers to explore innovative solutions for the challenges of tomorrow.

Publications Top Notes

Structural, optical, magnetic, and enhanced antibacterial properties of hydrothermally synthesized Sm-incorporating α-MoO3 2D-layered nanoplates

  • Authors: SK Sen, MR Munshi, A Kumar, AA Mortuza, MS Manir, MA Islam, …
    Journal: RSC Advances
    Year: 2022

Structural, electronic, optical and thermodynamic properties of AlAuO2 and AlAu0.94Fe0.06O2 compounds scrutinized by density functional theory (DFT)

  • Authors: MZ Rana, MR Munshi, M Al Masud, MS Zahan
    Journal: Heliyon
    Year: 2023

Theoretical insights on geometrical, mechanical, electronic, thermodynamic and photocatalytic characteristics of RaTiO3 compound: a DFT investigation

  • Authors: MS Zahan, MR Munshi, MZ Rana, M Al Masud
    Journal: Computational Condensed Matter
    Year: 2023

Theoretical investigation of structural, electronic, optical and thermoelectric properties of GaAgO2 based on Density Functional Theory (DFT): Two approaches

  • Authors: MR Munshi, MZ Rana, SK Sen, MRA Foisal, MH Ali
    Journal: World Journal of Advanced Research and Reviews
    Year: 2022

Electronic, thermodynamic, optical and photocatalytic properties of GaAgO2 and AlAgO2 compounds scrutinized via a systemic hybrid DFT

  • Authors: MR Munshi, SK Sen, MZ Rana
    Journal: Computational Condensed Matter
    Year: 2023

First principles prediction of geometrical, electronic, mechanical, thermodynamic, optical and photocatalytic properties of RaZrO3 scrutinized by DFT investigation

  • Authors: MR Munshi, M Al Masud, M Rahman, MR Khatun, MF Mian
    Journal: Computational Condensed Matter
    Year: 2024

 

 

Sajjad Ali | Computational Methods | Best Researcher Award

Dr. Sajjad Ali | Computational Methods | Best Researcher Award

PHD at Abdul Wali Khan University Mardan, Pakistan

Dr. Sajjad Ali is a Lecturer in Mathematics at Shaheed Benazir Bhutto University Sheringal, Dir (Upper), Pakistan. He received his Ph.D. in Mathematics from Abdul Wali Khan University Mardan in 2019. With over a decade of teaching experience, Dr. Ali specializes in Bio-Mathematics, Fractional Differential Equations, and Advanced Homotopy Methods. He supervises M.Phil and Ph.D. students and is involved in departmental administration. His research interests include mathematical modeling and computational methods. Dr. Ali is proficient in MATLAB, MS Office, Excel, and LaTeX, and he is fluent in Urdu, English, Pashto, and Khohar.

Professional Profiles

Education

Ph.D. in Mathematics (2015 – 2019) Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan M.Phil in Mathematics (2009 – 2012) Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan Bachelor of Education (B.Ed) (2007 – 2008) Allama Iqbal Open University, Islamabad, Pakistan Master of Science in Mathematics (2005 – 2007) University of Malakand Chakdara, Khyber Pakhtunkhwa, Pakistan Bachelor of Science in Mathematics (2002 – 2004) Government Degree College Tangi, Charsadda, Khyber Pakhtunkhwa, Pakistan F.Sc. Pre-Engineering (2000 – 2002) Government Degree College Tangi, Charsadda, Khyber Pakhtunkhwa, Pakistan Metric in Science (1999 – 2000) Government School No.2 Tangi, Charsadda, Khyber Pakhtunkhwa, Pakistan.

Skills

Research in Mathematics Teaching and Administrative Skills Software MATLAB MS Office Excel LaTeX

Work History

Shaheed Benazir Bhutto University Sheringal, Dir (Upper), Pakistan Lecturer in Mathematics (2011 – Present) Teaching Ph.D./M.Phil courses in Bio-Mathematics, Fractional Differential Equations, and Advanced Homotopy Methods Teaching BS courses in Partial Differential Equations and Ordinary Differential Equations Supervising M.Phil and Ph.D. research students M.Phil/Ph.D. Coordinator in the Department of Mathematics Member of the Departmental Admission Committee Warden of Ihsan Boys Hostel Tameer e Seerat Degree College, Mardan Campus, Pakistan Lecturer in Mathematics (2010 – 2011) Taught graduate-level Mathematics Hostel Warden Farabi Degree College, Peshawar, Pakistan Lecturer in Mathematics (2009 – 2010) Taught graduate-level Mathematics Government Degree College, Tangi, Charsadda, Pakistan Lecturer in Mathematics (2007 – 2009) Taught graduate-level Mathematics

Interests

Mathematical modeling, Computational methods

Awards

Top Position Holder in Master of Mathematics at University of Malakand (2007) Awardee as Lecturer in Mathematics through the Higher Education Commission Pakistan (2008)

Research Focuse

Dr. Sajjad Ali’s research focuses on the numerical treatment and computational solutions of fractional order differential equations, with applications in reaction-diffusion systems, biological population models, and ion-acoustic waves. His work includes developing iterative and stable methods for solving boundary value problems of nonlinear fractional differential equations. Dr. Ali has collaborated extensively with international researchers, contributing to journals such as Chaos, Solitons & Fractals and the Journal of Advanced Research. His studies also explore the stability analysis and exact solutions of complex mathematical models, emphasizing fractional calculus and its applications in various scientific and engineering problems.

Publications

  1. Nonlinear coupling of upper-hybrid waves with lower-hybrid waves in a degenerate dense plasma, Publication date: 2021.
  2. Unstable mode of ion-acoustic waves with two temperature q-nonextensive distributed electrons, Publication date: 2021.
  3. Computation of solution to fractional order partial reaction diffusion equations, Publication date: 2020.
  4. On stable iterative solutions for a class of boundary value problem of nonlinear fractional order differential equations, Publication date: 2019.
  5. Computation of iterative solutions along with stability analysis to a coupled system of fractional order differential equations, Publication date: 2019.
  6. Approximate solutions to nonlinear fractional order partial differential equations arising in ion-acoustic waves, Publication date: 2019.
  7. Stable monotone iterative solutions to a class of bound-ary value problems of nonlinear fractional order differential equations, Publication date: 2019.
  8. Monotone iterative technique and Ulam-Hyers stability analysis for nonlinear fractional order differential equations with integral boundary value conditions, Publication date: 2019.
  9. Optimum solutions of space fractional order diffusion equation, Publication date: 2018.
  10. On Approximate solutions of fractional Order partial differential equations, Publication date: 2018.
.