Yuri Kurilenkov | Computational Methods | Best Researcher Award

Dr. Yuri Kurilenkov | Computational Methods | Best Researcher Award

Dr. Yuri Kurilenkov | P.N. Lebedev Physical Institute RAS | Russia

👨‍🎓 Profile

📚 Early Academic Pursuits

Dr. Yuri K. Kurilenkov began his academic journey with a M.S. in Physics of Strongly Coupled Ionic Systems from the Moscow Power Engineering Institute in 1971. His early research focused on the theoretical and experimental aspects of plasma physics, culminating in a Ph.D. in “Fluctuating Microfields and Opacities in Strongly Coupled Plasmas” from the Institute for High Temperatures, Russian Academy of Sciences, in 1978. This foundational education established his expertise in plasma dynamics and microfield fluctuations, pivotal for his later contributions.

👨‍🔬 Professional Endeavors

Dr. Kurilenkov has been associated with the Institute for High Temperatures, Russian Academy of Sciences, since 1971, starting as a Research Scientist in the Department of Plasma Physics. In 1981, he transitioned to the Department of Optics and Applied Physics, where he has served as a Senior Researcher. Over decades, his work has spanned optical and transport properties of strongly coupled plasmas, laser-material interactions, and the exploration of hot dense matter physics.

🔬 Contributions and Research Focus

Dr. Kurilenkov’s research interests encompass a wide array of cutting-edge topics, including:

  • Anomalous Stopping: Understanding energy dissipation in plasma systems.
  • High Energy Density Matter: Studying x-ray generation and energy conversion under extreme conditions.
  • Modern Neutron Sources and Nuclear Synthesis: Exploring innovative methods like DD and aneutronic pB11 synthesis.
    His investigations into collective phenomena in collision-dominated plasmas and density effects in radiation and stopping have significantly advanced the understanding of non-ideal plasmas.

🌟 Impact and Influence

Dr. Kurilenkov has received numerous honors, including a Fellowship from MENESR, France, in 1996, and multiple visiting professorships at prestigious institutions like the University of Maryland and the University of California. His collaborative work under NATO Science Programs has pioneered advancements in plasma absorption, stopping, and x-ray emission efficiency. These efforts have enriched global understanding of high energy density matter and its practical applications.

📊 Academic Citations

Dr. Kurilenkov has contributed to over 60 refereed journal papers and 140 conference presentations, highlighting his prolific output. His single-authored book and multiple collaborative projects underscore his academic influence in the field of plasma physics.

🛠️ Technical Skills

Dr. Kurilenkov is proficient in advanced experimental and theoretical techniques in:

  • Plasma Spectroscopy
  • High-Energy Particle Generation
  • Optical Diagnostics for dense plasmas
    His technical expertise enables precise insights into vacuum discharge phenomena and x-ray efficiency under extreme conditions.

🏫 Teaching and Knowledge Dissemination

As a visiting professor at top universities worldwide, Kurilenkov has inspired the next generation of researchers. He has delivered lectures on plasma dynamicsenergy conversion systems, and innovative neutron source technologies, fostering cross-disciplinary knowledge exchange.

🏅 Legacy and Future Contributions

Dr. Yuri K. Kurilenkov’s legacy lies in his groundbreaking insights into strongly coupled plasmas and his role in advancing the fundamentals of nuclear technologies. His work on nano-second vacuum discharges and virtual cathodes continues to push the boundaries of nuclear microreactor development. Kurilenkov’s research ensures a lasting impact on the fields of plasma physics and high-energy density systems.

Top Noted Publications

On the Contribution of a Cluster Target to Generation of the DD Neutrons in a Nanosecond Vacuum Discharge
  • Authors: S.Y. Gus’kov, Y.K. Kurilenkov, A.V. Oginov, I.S. Samoilov
  • Journal: Plasma Physics Reports, 2024
Fully Electromagnetic Code KARAT Applied to the Problem of Aneutronic Proton–Boron Fusion
  • Authors: S.N. Andreev, Y.K. Kurilenkov, A.V. Oginov
  • Journal: Mathematics, 2023
Oscillating Plasmas for Proton-Boron Fusion in Miniature Vacuum Discharge
  • Authors: Y.K. Kurilenkov, V.P. Tarakanov, A.V. Oginov, S.Y. Gus’kov, I.S. Samoylov
  • Journal: Laser and Particle Beams, 2023
Electromagnetic Emissions in the MHz and GHz Frequency Ranges Driven by the Streamer Formation Processes
  • Authors: E.V. Parkevich, A.I. Khirianova, T.F. Khirianov, S.A. Ambrozevich, A.V. Oginov
  • Journal: Physical Review E, 2022
On the Plasma Quasineutrality under Oscillatory Confinement Based on a Nanosecond Vacuum Discharge
  • Authors: Y.K. Kurilenkov, V.P. Tarakanov, A.V. Oginov, S.Y. Gus’kov, I.S. Samoylov
  •  Journal: Plasma Physics Reports, 2022

 

 

Fangxia Zhao | Computational Methods | Best Researcher Award

Mrs. Fangxia Zhao | Computational Methods | Best Researcher Award

Associate Professor at Capital University of Economics and Business, China

👨‍🎓 Profiles

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Fangxia Zhao embarked on her academic journey with a strong foundation in Transportation Engineering. Her advanced studies and research helped her gain a deep understanding of complex transportation networks and big data analytics. Over the years, she honed her expertise in the modeling of traffic systems, urban mobility, and data-driven optimization. Her academic pursuits, supported by several national-level projects, allowed her to make significant strides in theoretical research, laying the groundwork for her future professional achievements.

Professional Endeavors 💼

Dr. Zhao is currently an Associate Professor and Master’s Supervisor at the School of Management Engineering, where she also serves as the Head of the Department of Big Data. With years of academic leadership and research guidance, she has led cutting-edge projects funded by prestigious research bodies, including the Central University Research Fund and University Research Start-up Fund. Throughout her career, she has actively contributed to national and provincial research projects, consistently pushing the boundaries of transportation modeling and big data analytics.

Teaching Experience 👩‍🏫

Dr. Zhao is a dedicated educator, teaching courses such as:

  • Computer Network Technology and Applications
  • Data Structures
  • Principles and Applications of Databases
  • Python Programming Design
  • Green, Intelligent, and Shared Transportation

Her teaching focuses on equipping students with the skills needed to succeed in data science, network optimization, and smart transportation systems. She emphasizes hands-on learning and problem-solving, ensuring that her students are well-prepared for the challenges of modern transportation engineering.

Contributions and Research Focus 🔍

Dr. Zhao’s primary research interests include:

  • Complexity Modeling of Transportation Networks 🚗
  • Big Data Analysis in Transplantation 💉
  • Optimization of Urban Mobility 🏙️
  • Intelligent and Green Transportation 🌱

Her work has played a pivotal role in advancing transportation research, especially in the areas of electric vehicle behavior and network optimization. Through mathematical modeling, she has contributed to understanding how factors such as travel mode choice, vehicle scheduling, and urban road evolution influence the design of more efficient, sustainable, and intelligent transportation systems.

Academic Cites 📚

Dr. Zhao’s research has gained widespread recognition, particularly in the realms of transportation modeling and big data analytics. Her papers have been cited numerous times, including high-impact articles on the evolutionary dynamics of transportation networks, the role of electric vehicles, and the integration of bus services. Her work on the coevolution of population distribution and road networks has been particularly influential, establishing her as a key figure in the field of spatial economics and network theory.

Impact and Influence 🌟

Dr. Zhao’s influence in the academic community is reflected in her extensive publication record, including SCI-indexed papers in leading journals such as Physica A, Networks & Spatial Economics, and Plos One. With over 20 academic papers, she has made major contributions to the study of transportation networks, population distribution, and disaster prevention systems. Her research is widely cited, and her contributions are used by scholars and industry professionals to design smarter, more resilient transportation systems.

Technical Skills 💻

Dr. Zhao is a skilled data scientist, proficient in a variety of technical tools essential for big data analysis and computational modeling. Her expertise includes:

  • Python Programming 🐍
  • Database Management 🗄️
  • Network Design Optimization 🛠️
  • Data Visualization 📊
  • Algorithm Development ⚙️

These skills allow her to analyze complex datasets, develop robust optimization models, and design effective algorithms that improve transportation efficiency and sustainability. Additionally, her involvement in developing software like the School Bus Scheduling Solver and MaaS Systems highlights her technical prowess in real-world applications.

Invention Patents and Software Copyrights 💡

In addition to her research papers, Dr. Zhao holds a national invention patent for the Railway Disaster Prevention System and has developed two software copyrights:

  • School Bus Scheduling Solver
  • MaaS System Based on Knowledge Graphs

These patents and software showcase her ability to transform research ideas into practical solutions, driving innovation in the field of transportation safety and mobility services.Dr. Zhao’s legacy is marked by her pioneering work in the intersection of transportation, data science, and urban development, setting the stage for future breakthroughs in smart mobility and sustainable transportation systems.

Top Noted Publications

Multi-depot vehicle scheduling with multiple vehicle types on overlapped bus routes

  • Authors: Shang, H., Liu, Y., Wu, W., Zhao, F.
    Journal: Expert Systems with Applications, 2023

Role of electric vehicle driving behavior on optimal setting of wireless charging lane

  • Authors: Zhao, F., Shang, H., Cui, J.
    Journal: Physica A: Statistical Mechanics and Its Applications, 2023

Integration of conventional and customized bus services: An empirical study in Beijing

  • Authors: Shang, H., Chang, Y., Huang, H., Zhao, F.
    Journal: Physica A: Statistical Mechanics and Its Applications, 2022

Role of transportation network on population distribution evolution

  • Authors: Zhao, F.X., Shang, H.Y.
    Journal: Physica A: Statistical Mechanics and Its Applications, 2021

 

 

Fekadu Muleta | Computational Methods | Editorial Board Member

Assist. Prof. Dr. Fekadu Muleta | Computational Methods | Editorial Board Member

Assistant professor (PhD) at Wolaita Sodo university, Ethiopia

Dr. Fekadu Muleta is an Assistant Professor in the Department of Chemistry at Adama Science and Technology University (ASTU), Ethiopia. With a PhD in Bioinorganic Chemistry, his research spans across synthesis, characterization, and biological applications of metal complexes. His academic journey includes a Master’s in Inorganic Chemistry from Bahir Dar University (BDU), where he also completed his Bachelor’s degree in Chemistry. Dr. Muleta has been actively involved in both teaching and research, contributing significantly to the fields of coordination chemistry, biochemistry, and biological chemistry. His scientific approach integrates molecular docking, antimicrobial testing, and the development of novel complexes for anti-cancer applications. His work has been published in several prestigious journals, and he continues to make strides in his area of expertise with a focus on natural product-based ligands.

🎓Profile

📚 Early Academic Pursuits

Dr. Fekadu Muleta’s academic journey began with a strong foundation in Chemistry at Bahir Dar University (BDU), Ethiopia. His interest in chemistry was evident early on, earning him a Bachelor’s degree in Science Chemistry from BDU in 2007. Following his undergraduate studies, he pursued a Master’s degree in Inorganic Chemistry, specializing in coordination chemistry and biochemistry. Under the mentorship of Prof. Girma Kibatu, his thesis focused on public health issues, specifically analyzing iodine deficiency disorders and iodized salt consumption levels among school children in Amuma and Minjo Districts in Beneshangul Gumuz, Ethiopia. This research, conducted from 2010 to 2011, laid the groundwork for his later transition into research that integrates chemistry with biological applications.

🎓 Professional Endeavors

Dr. Muleta’s professional path took a decisive step forward with his appointment as an Assistant Professor at Adama Science and Technology University (ASTU). Here, he advanced his expertise in Bioinorganic Chemistry, Biochemistry, and Inorganic Chemistry. His Ph.D. dissertation, titled “Synthesis, Characterization, and Molecular Docking Studies of Homoleptic and Heteroleptic Zinc(II), Copper(II), Nickel(II) Complexes of Semicarbazone and Thiosemicarbazone Derivative Ligands for Biological Application”, was supervised by Prof. Tegene Desalegn. This work combined his deep interest in organic ligands, metal complexes, and their biological potential, an area where his academic and professional interests converge.

🔬 Contributions and Research Focus

Dr. Muleta’s research is a blend of synthetic chemistry, biological applications, and advanced analytical techniques. His primary research focuses on the synthesis and characterization of semicarbazone and thiosemicarbazone derivative organic ligands derived from natural products. He has extensively worked on metal complexes, such as zinc, copper, and nickel, exploring their potential as antimicrobial agents, free radical scavengers, and even anti-cancer compounds. In particular, his investigations into heteroleptic and homoleptic complexes have led to novel discoveries that contribute significantly to the understanding of bioinorganic chemistry. Furthermore, Dr. Muleta’s expertise in molecular docking studies offers a crucial link between theoretical chemistry and practical biological applications, a critical area for drug discovery.

🌍 Impact and Influence

Dr. Muleta has had a profound impact on both academic research and the scientific community, particularly in Ethiopia. Through his innovative studies on metal complexation and biological activity, he has contributed to the broader field of medicinal chemistry, with applications that may influence drug design, environmental monitoring, and health sciences. His publications in peer-reviewed journals, such as the Journal of Molecular Structure and the Journal of Chemistry, are a testament to his ability to push the boundaries of both synthetic chemistry and biochemistry.

📑 Academic Citations

Dr. Muleta’s research has already garnered significant recognition in the academic community. Some of his highly cited publications include:

  1. Synthesis, characterization, in-silico, and in-vitro biological studies of Cu(II), Zn(II) complexes of semicarbazone, thiosemicarbazone derivatives of dehydrozingerone published in the Journal of Molecular Structure, 2022.
  2. Synthesis, molecular docking, and biological studies of novel heteroleptic Cu(II) and Zn(II) complexes of natural product-based semicarbazone derivatives published in 2023, which highlights his interdisciplinary approach integrating chemistry and biology.

These publications have established Dr. Muleta as a valuable contributor to the growing body of knowledge on bioinorganic chemistry and its biological applications, with the potential to lead to therapeutic advancements.

🛠️ Technical Skills

Dr. Muleta’s technical expertise spans a range of sophisticated analytical techniques and platforms. His proficiency in advanced spectroscopy (e.g., Nuclear Magnetic Resonance (NMR), Infrared (IR), UV-Visible Spectroscopy), mass spectrometry, and X-ray Diffraction (XRD) allows him to accurately characterize chemical compounds at the molecular level. Additionally, he is skilled in Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA), tools essential for studying the thermal properties of materials. His use of computational tools for molecular docking further complements his empirical research, providing a holistic approach to complex biological questions.

🧑‍🏫 Teaching Experience

As an Assistant Professor at Adama Science and Technology University, Dr. Muleta has had the privilege of shaping the next generation of chemists. He teaches courses related to inorganic chemistry, bioinorganic chemistry, and biochemistry, instilling in his students not only a deep understanding of the subject matter but also a passion for scientific discovery. His ability to translate complex concepts into digestible lessons has made him a respected educator, and his mentorship has inspired many students to pursue careers in research and academia. Dr. Muleta’s work in research and teaching goes hand-in-hand, as he involves his students in cutting-edge research projects, fostering an environment of hands-on learning.

🔮 Legacy and Future Contributions

Looking ahead, Dr. Muleta’s research trajectory promises further innovations in bioinorganic chemistry. He is well-poised to make significant strides in the synthesis of novel metal-based complexes with potential biological applications, particularly in the development of new drugs and antimicrobial agents. His work on crystal growth and solid-state chemistry is expected to contribute to material science, while his continued collaboration with international research communities will expand his global influence.

Top Noted Publications📖

Synthesis, In Silico, and Biological Applications of Novel Heteroleptic Copper (II) Complex of Natural Product-Based Semicarbazone Ligands
  • Journal: Journal of Chemistry
    Authors: Fekadu Muleta, Tegene Desalegn, Marcelino Maneiro
    Year: 2022
Synthesis, characterization, in-silico, and in-vitro biological studies of Cu(II), Zn(II) complexes of semicarbazone, thiosemicarbazone derivatives of dehydrozingerone
  • Journal: Journal of Molecular Structure
    Authors: Fekadu Muleta
    Year: 2022
Synthesis, In vitro Biological Studies of novel Homoleptic Ni(II) and Zn(II) Complexes of Thiosemicarbazide Derivative ligand
  • Journal: Chemistry and Materials Research
    Authors: Fekadu Muleta
    Year: 2022

 

 

 

 

Himanshu Kumar | Computational Methods | Editorial Board Member

Dr. Himanshu Kumar | Computational Methods | Editorial Board Member

Adjunct Professor at School of Physics, Damghan University, Iran

Dr. Himanshu Kumar is an experienced physicist with over 15 years of teaching expertise. With a PhD in Physics from Jamia Millia Islamia University, and double master’s degrees in Physics and Information Technology, Dr. Kumar combines a deep understanding of both theoretical and applied sciences. He is currently affiliated with the School of Physics, Damghan University, Iran, and holds an adjunct professor role at Delhi Technology University, India. Throughout his career, Dr. Kumar has taught a wide range of courses across Physics, Mathematics, and Computer Science at various universities, consistently earning excellent student evaluations. His teaching style is highly interactive, ensuring that each student, regardless of their academic level, comprehends the subject matter thoroughly. Additionally, Dr. Kumar has contributed to research and academic mentorship, with multiple publications in international journals and participation in various conferences.

Profile🎓

Early Academic Pursuits 🎓

Dr. Himanshu Kumar’s academic journey began with his foundational studies in Physics, earning his BSc in Physics from Vinoba Bhave University in Jharkhand, India, in 1996. He further honed his expertise by completing his MSc in Physics (2004) and a PhD in Physics from Jamia Millia Islamia University, Delhi (2014). Dr. Kumar also pursued an interdisciplinary path by obtaining a PGDITM (Post Graduate Diploma in Information Technology and Management) and an Advanced Diploma in Information Systems from Oxford Software Institute, Delhi. This unique combination of Physics, Information Technology, and Management laid the groundwork for his later contributions to both academia and research.

Professional Endeavors 💼

Dr. Himanshu Kumar has a distinguished career spanning over 15 years in academia. After completing his PhD, he has served in various esteemed positions, currently as an Adjunct Professor at Delhi Technology University and affiliated with the School of Physics, Damghan University, Iran. He has also held key roles as an Assistant Professor at prominent institutions such as Delhi University, NSUT University, and Lingaya University. His teaching career spans a wide array of courses in Physics, Mathematics, and Computer Science, where he has received excellent evaluations from students, a testament to his dedication and interactive teaching style. Dr. Kumar’s ability to connect complex scientific concepts with students of varying academic levels has earned him great respect in the academic community.

Contributions and Research Focus 🔬

Dr. Himanshu Kumar’s primary research interests lie in the computational aspects of physics, especially focusing on quantum gravity, cosmology, and astrophysics. His research has involved modeling complex physical systems, both analytically and numerically. He has published extensively in high-impact journals, contributing to topics such as general relativity, black hole thermodynamics, and quantum corrections in charged BTZ black holes. His work in computational physics bridges theoretical understanding with practical applications, making significant strides in the modeling of astrophysical systems and quantum phenomena. Dr. Kumar has presented his findings at international conferences and has served as a mentor to young researchers through summer research programs, guiding them through cutting-edge topics in theoretical physics.

Impact and Influence 🌍

Dr. Himanshu Kumar has made substantial contributions to the fields of astrophysics, cosmology, and computational physics. His research on quantum gravity and general relativity has had significant implications for our understanding of the universe’s most fundamental processes. In addition to his research contributions, Dr. Kumar has greatly impacted the academic growth of his students, guiding them not only in traditional coursework but also in practical research mentorship. His Summer Research Mentorship Award from Delhi University stands as a recognition of his commitment to student development and the advancement of theoretical physics. His active participation in conferences and workshops further solidifies his role as a key contributor to the scientific community, bringing innovative ideas to the forefront of astrophysics and cosmology.

Academic Cites 📚

Dr. Himanshu Kumar’s work is widely recognized in the scientific community, with his papers being frequently cited in research related to general relativity, astrophysics, and quantum mechanics. Some of his most cited works include his contributions to Gen. Rel. Grav. and Grav. Cosmol., where his research on higher-order quantum corrections in charged BTZ black holes is poised to significantly influence future studies in black hole thermodynamics. Dr. Kumar’s work not only pushes the boundaries of theoretical physics but also bridges gaps between different fields, such as information technology and physics, creating an interdisciplinary research environment that is both innovative and impactful.

Technical Skills 💻

Dr. Himanshu Kumar possesses a rich technical skill set that spans both Physics and Information Technology. His expertise in computational physics has led him to master various programming languages and simulation tools, such as C++, Python, Fortran, and SciLab. Additionally, he is proficient in using Gnuplot and other computational software for data analysis and visualization. Dr. Kumar’s dual expertise in Physics and IT enables him to model complex physical systems, apply advanced numerical methods, and design simulations that aid in understanding theoretical phenomena. His ability to integrate computational methods into his research is a distinguishing feature of his academic profile.

Teaching Experience 🧑‍🏫

With over 15 years of experience, Dr. Himanshu Kumar has taught a diverse range of courses in Physics, Mathematics, and Computer Science at both the undergraduate and postgraduate levels. His teaching is characterized by an interactive style that focuses on ensuring each student fully understands foundational concepts before progressing to more advanced topics. He has taught Cosmology, Astrophysics, Wave Optics, Classical Mechanics, and Computational Physics, among other courses. Dr. Kumar’s commitment to his students is reflected in his consistently high student evaluations, earning him a reputation as a dedicated and effective educator. His innovative approach to teaching and his ability to simplify complex topics have inspired students to pursue careers in physics and computational science.

Legacy and Future Contributions 🔮

Dr. Himanshu Kumar’s legacy is built on his interdisciplinary approach to teaching and research. His contributions to astrophysics, cosmology, and computational physics have paved the way for further exploration of quantum gravity and black hole thermodynamics. As he continues his work at Damghan University and Delhi Technology University, Dr. Kumar aims to inspire future generations of physicists and researchers. His commitment to student mentorship, evidenced by his numerous summer research programs, and his ongoing publications, ensure that his influence on the field will continue to grow. His work not only advances theoretical physics but also bridges the gap between scientific disciplines, offering new perspectives on how physics and information technology can be integrated to solve complex, real-world problems.

Top Noted Publications📖

Method Facilitating Wired and Wirelessly Charging Batteries of Electric Vehicles (EVS) via Deployment of Smart Charging Plug and Socket for Autonomously Locating and Engaging Plug-Socket Connector in Context of Smart Charging System
  • Journal: Patent
    Author: Dr. Himanshu Kumar
    Year: 2021
The Ageing Problem of Twins in Reissner–Nordström Spacetime
  • Journal: Modern Physics Letters A
    Author: Saurabh, Himanshu Kumar
    Year: 2020
    DOI: 10.1142/s021773232050008x
Self-interacting Cold Dark Matter: A New Jeans Theory Based Model
  • Journal: Gravitation and Cosmology
    Author: Himanshu Kumar
    Year: 2015
    DOI: 10.1134/s0202289315040106
Feebly Self-Interacting Cold Dark Matter: New Theory for the Core-Halo Structure in GLSB Galaxies
  • Journal: ArXiv
    Author: Himanshu Kumar, Sharf Alam
    Year: 2013
    DOI: 10.48550/ARXIV.1307.7469
Surface Tension with Normal Curvature in Curved Space-Time
  • Journal: General Relativity and Gravitation
    Author: Himanshu Kumar, Sharf Alam, Suhail Ahmad
    Year: 2013
    DOI: 10.1007/s10714-012-1464-y

 

 

 

Maurizio Dapor| Computational Methods | Best Researcher Award

Dr. Maurizio Dapor| Computational Methods | Best Researcher Award

Physicist at Fondazione Bruno Kessler, Italy

Maurizio Dapor is an esteemed Italian physicist and Senior Research Scientist at the Interdisciplinary Laboratory for Computational Science at ECT*-FBK. Born on April 23, 1959, he has made significant contributions to both theoretical and experimental physics. With dual habilitations as a Full Professor in these fields, Dapor has been pivotal in advancing computational methods in materials science. His role as an Associate Editor for Computational Materials Science and various visiting professorships across Europe further exemplify his commitment to research and education. Recognized as one of Stanford’s Top 2% Scientists, his work continues to impact the scientific community.

 🎓Profile: 

Education:

Dapor earned his M.Sc. in Physics with Summa Cum Laude from the University of Trento in 1984. He later pursued a Ph.D. in Materials Science and Engineering from the same institution, completing it in 2013. His educational journey began at Liceo Antonio Rosmini, where he graduated with a High School Diploma in 1978. This strong academic foundation has enabled him to excel in various roles in academia and research, contributing extensively to the scientific understanding of materials and their applications.

Professional Experience:

With over three decades of experience, Dapor has held key positions, including Senior Scientist at ECT* and Head of the FBK Interdisciplinary Laboratory for Computational Science. He has served as a Teaching Fellow at the University of Trento, focusing on Solid State Physics and Computational Methods. His international experience includes visiting professorships at Gdansk University of Technology and the University of Sheffield, enhancing his global academic profile. Additionally, Dapor has contributed as a scientific consultant at ETH Zurich, reinforcing his expertise in computational materials research and development.

Research Focus:

Maurizio Dapor’s research primarily centers on computational science and its application to materials physics. He investigates complex phenomena in solid-state systems and develops innovative computational methods to enhance our understanding of material properties. His work addresses critical challenges in transport phenomena and aims to bridge theoretical insights with practical applications. By focusing on interdisciplinary collaborations, Dapor’s research not only advances theoretical frameworks but also contributes to the development of cutting-edge materials for various technological applications.

Awards and Honors:

Dapor’s contributions to physics and materials science have earned him notable recognition, including the distinction of being listed among Stanford’s Top 2% Scientists. His academic achievements are further highlighted by two National Scientific Habilitations as a Full Professor in both Theoretical and Experimental Physics of Matter. His work as an Associate Editor for Frontiers in Materials demonstrates his leadership in advancing the field. These accolades reflect his dedication to research excellence and his influence on the scientific community.

📚Publication Top Notes:

Title: Charge Phenomena in the Elastic Backscattering of Electrons from Insulating Polymers
  • Authors: Dapor, M.
    Publication Year: 2024
    Citations: 0
Title: Electron-induced hydrogen desorption from selected polymers (polyacetylene, polyethylene, polystyrene, and polymethyl-methacrylate)
  • Authors: Dapor, M.
    Publication Year: 2024
    Citations: 1
Title: The role of low-energy electrons in the charging process of LISA test masses
  • Authors: Taioli, S., Dapor, M., Dimiccoli, F., Villani, M., Weber, W.J.
    Publication Year: 2023
    Citations: 11
Title: Mechanical Properties of Twisted Carbon Nanotube Bundles with Carbon Linkers from Molecular Dynamics Simulations
  • Authors: Pedrielli, A., Dapor, M., Gkagkas, K., Taioli, S., Pugno, N.M.
    Publication Year: 2023
    Citations: 6
Title: The Role of Molecular Structure in Monte Carlo Simulations of the Secondary Electron Yield and Backscattering Coefficient from Methacrylic Acid
  • Authors: Wiciak-Pawłowska, K., Winiarska, A., Taioli, S., Franz, M., Franz, J.
    Publication Year: 2023
    Citations: 0
Title: Spin-polarization after scattering
  • Authors: Dapor, M.
    Publication Year: 2023
    Citations: 1
Title: In search of the ground-state crystal structure of Ta2O5 from ab initio and Monte Carlo simulations
  • Authors: Pedrielli, A., Pugno, N.M., Dapor, M., Taioli, S.
    Publication Year: 2023
    Citations: 5

 

 

 

D. Easwaramoorthy | Computational Methods | Best Researcher Award

Assoc Prof Dr. D. Easwaramoorthy | Computational Methods | Best Researcher Award

Associate Professor at Vellore Institute of Technology, Vellore, India

Dr. D. Easwaramoorthy is an Associate Professor in the Department of Mathematics at Vellore Institute of Technology, Tamil Nadu, India. With a passion for mathematics and education, he has dedicated over 11 years to teaching and nurturing the next generation of mathematicians. Dr. Easwaramoorthy’s commitment to academic excellence is evident through his extensive research and publication record, which has earned him recognition both nationally and internationally. He actively engages in interdisciplinary research and is known for his contributions to fuzzy mathematics and fractal analysis.

🎓Profile:

Education:

Dr. Easwaramoorthy holds a Ph.D. in Mathematics from The Gandhigram Rural Institute, where he completed his thesis on Fuzzy Fractal Analysis with Applications. He earned his M.Sc. in Mathematics from Bharathidasan University with a focus on the Stone-Weierstrass Theorem, achieving a commendable 79.5%. His academic journey began with a B.Sc. in Mathematics from Bishop Heber College, where he excelled with 82%. His educational qualifications reflect a strong foundation in mathematical principles, further enhanced by various certifications in advanced topics, including machine learning and data science.

Professional Experience:

Dr. Easwaramoorthy has over 16 years of research experience and 11 years of teaching experience. He began his academic career as a Junior Assistant Professor at Vellore Institute of Technology and has progressed to his current role as an Associate Professor. Throughout his tenure, he has taught various courses, including Discrete Mathematics, Graph Theory, and Machine Learning. His role as a Ph.D. guide demonstrates his commitment to mentoring aspiring researchers. Dr. Easwaramoorthy’s experience is complemented by participation in international conferences and collaborative projects, enhancing his profile as a well-rounded academic.

Research Focus:

Dr. Easwaramoorthy’s research primarily focuses on Fractal Analysis, Fuzzy Mathematics, and Signal and Image Analysis. His notable work includes publications in peer-reviewed journals and contributions to various academic books. He is particularly interested in applying mathematical concepts to real-world problems, emphasizing the significance of fuzzy logic and fractals in various domains. His involvement in a UGC-funded project exploring chaotic dynamics in the human brain demonstrates his interdisciplinary approach to research. Dr. Easwaramoorthy continues to explore new frontiers in mathematics, aiming to contribute to both theoretical and applied mathematics.

Awards and Honors:

Dr. Easwaramoorthy has received several accolades for his contributions to mathematics, including the Young Scientist Award at the International Scientist Awards on Engineering, Science, and Medicine. He qualified for the Tamil Nadu State Eligibility Test (TNSET) in 2017, showcasing his proficiency in mathematical sciences. Additionally, he was awarded the GRI-Fellowship at The Gandhigram Rural Institute, further recognizing his academic achievements. His accolades reflect not only his research excellence but also his commitment to fostering a culture of academic achievement and innovation.

📚Publication Top Notes:

Generation of Fractals via Iterated Function System of Kannan Contractions in Controlled Metric Space
    • Authors: Thangaraj, C., Easwaramoorthy, D., Selmi, B., Chamola, B.P.
    • Year: 2024
    • Citations: 6
Enumeration of Multivariate Independence Polynomial for Iterations of Sierpinski Triangle Graph
    • Authors: Nithiya, K.S., Easwaramoorthy, D.
    • Year: 2024
    • Citations: 0
Multifractal Detrended Fluctuation Analysis on COVID-19 Dynamics
    • Authors: Dhanzeem Ahmed, M., Easwaramoorthy, D., Selmi, B., Darabi, S.
    • Year: 2023
    • Citations: 1
An Integrated Perspective of Fractal Time Series Analysis for Infected Cases of COVID-19
    • Authors: Gowrisankar, A., Easwaramoorthy, D., Valarmathi, R., Ananth, C., Vasiliev, I.
    • Year: 2023
    • Citations: 0
Fractal Based Automatic Detection of Complexity in COVID-19 X-ray Images
    • Authors: Thangaraj, C., Easwaramoorthy, D., Muhiuddin, G., Selmi, B., Kulish, V.
    • Year: 2023
    • Citations: 0
Fractals via Controlled Fisher Iterated Function System
    • Authors: Thangaraj, C., Easwaramoorthy, D.
    • Year: 2022
    • Citations: 2
Generalized Fractal Dimensions Based Comparison Analysis of Edge Detection Methods in CT Images for Estimating the Infection of COVID-19 Disease
    • Authors: Thangaraj, C., Easwaramoorthy, D.
    • Year: 2022
    • Citations: 9