Rui Zu | Computational Methods | Best Researcher Award

Dr Rui Zu | Computational Methods | Best Researcher Award

Research Assistant , Penn State University | United States

Dr. Rui Zu is an accomplished materials scientist and optical physicist whose research spans advanced optical simulations, nonlinear optics, ferroelectric materials, and quantum-enabled devices. With a strong academic foundation from Pennsylvania State University, Columbia University, and the University of Science and Technology Beijing, he has emerged as a prominent voice in the field of complex material systems and optoelectronic engineering.

👨‍🎓Profile

Orcid

Google Scholar

📚 Early Academic Pursuits

Dr. Zu began his academic journey at the University of Science and Technology, Beijing, earning his B.E. in Materials Physics in 2016. He then pursued a Master’s degree in Materials Science and Engineering at Columbia University, where he honed his skills in atomic-layer fabrication and microscopy. Building upon this, he earned his Ph.D. from Penn State University in 2023, where he developed novel methodologies and optical models to explore the physics of nonlinear optical responses in crystalline heterostructures.

🏢 Professional Endeavors

Following his doctoral studies, Dr. Zu joined 3M’s Display and Electronics Product Platform as a Research Engineer, where he leads efforts in optical design for display technologies, focusing on anti-glare and anti-sparkle solutions for self-emissive and near-eye displays. His work integrates advanced multi-scale simulation methods (FDTD, TMM, Fourier optics, ray tracing) with system-level optical prototyping, pushing the envelope in next-generation display performance.

🔬 Contributions and Research Focus

Dr. Zu’s work is distinguished by its depth and innovation in nonlinear optical simulation, ferroelectric materials engineering, and optical metrology. His flagship contribution is the development of the ♯SHAARP (Second Harmonic Analysis of Anisotropic Rotational Polarimetry) Mathematica-based package a pioneering simulation toolkit that addresses complex optical challenges including anisotropy, low symmetry, absorption, and dispersion in multilayer systems. He has also engineered sub-micrometer ferroelectric domain gratings and explored high-entropy materials, enabling ultraviolet harmonic generation, magneto-optical imaging, and strain-tunable photonic devices.

🌍 Impact and Influence

Dr. Zu’s research has led to publications in top-tier journals such as Science Advances, Nature Communications, PNAS, and Physical Review B, reflecting the high impact and interdisciplinary relevance of his work. His contributions have reshaped the understanding of optoelectronic behavior in correlated systems, and he continues to push forward the boundaries of materials design and characterization through collaborative research and open-source tools.

📊 Academic Citations

With a growing number of peer-reviewed publications many of which are co-authored with leaders in the field including L.-Q. Chen, V. Gopalan, and A. M. Lindenberg Dr. Zu’s work is frequently cited in domains ranging from computational photonics to solid-state physics, indicating his role as a rising authority in the study of nonlinear optical phenomena and ferroelectric materials.

🛠️ Research Skills

Dr. Zu possesses a formidable toolkit of research competencies, including:

  • Optical Simulation: FDTD, RCWA, TMM, ray tracing, Fourier-based wave propagation

  • Optical System Development: Nonlinear spectroscopy, ultrafast pump-probe, MOKE

  • Instrumentation: SEM, TEM, AFM, PFM, FTIR, Raman, Photoluminescence

  • Software and Programming: Mathematica (SHAARP), COMSOL, LabView

  • Advanced Materials Fabrication and Characterization: High-entropy materials, ferroelectrics

👨‍🏫 Teaching & Mentorship Experience

Dr. Zu has demonstrated a strong commitment to teaching and mentorship, having served as a Teaching Assistant for courses such as Crystal Anisotropy and Solid State Physics. He developed Mathematica-based modules that significantly enriched classroom engagement. Beyond formal coursework, he has mentored undergraduate researchers, including REU students, many of whom advanced to present at conferences or publish collaboratively. As a Lab Safety Officer, he also ensured the group’s operational continuity during the COVID-19 pandemic.

🏆 Awards and Honors

Dr. Zu’s excellence has been recognized with numerous awards, including:

  • 🎓 Alumni Association Dissertation Award, Penn State University (2023)

  • ✈️ Department Travel Award for Graduate Students, Penn State (2023)

  • 🏅 Renmin Principal Level Scholarship, USTB (2013)

  • 🌟 Merits Student Awards, USTB (2013, 2014)

🚀 Legacy and Future Contributions

As an innovator in optical and material physics, Dr. Rui Zu’s trajectory continues to rise. His work bridges fundamental science and industrial application, from quantum-inspired simulationsquantum-inspired simulations to real-world display technologies. With tools like SHAARP gaining traction in the research community and his growing influence in interdisciplinary materials science, Dr. Zu is poised to become a thought leader in photonics, materials design, and computational optics. His legacy will likely be defined by a continued push toward open scientific tools, educational outreach, and cross-sector impact.

Top Noted Publications

Thermodynamic theory of linear optical and electro-optical properties of ferroelectrics

  • Authors: Ross, A., Ali, M. S. M. M., Saha, A., Zu, R., Gopalan, V., Dabo, I., Chen, L.-Q.

  • Journal: Physical Review B

  • Year: 2025

Hidden domain boundary dynamics toward crystalline perfection

  • Authors: Mangu, A., Stoica, V. A., Zheng, H., Yang, T., Zhang, M., Wang, H. (Hugo), Zu, R., Nguyen, Q. L., Song, S., Das, S., Meisenheimer, P., Donoway, E., Chollet, M., Sun, Y., Turner, J. J., Freeland, J. W., Wen, H., Martin, L. W., Chen, L.-Q., Gopalan, V., Zhu, D., Cao, Y., Lindenberg, A. M.

  • Journal: Proceedings of the National Academy of Sciences (PNAS)

  • Year: 2025

Bulk photovoltaic effect and high mobility in the polar 2D semiconductor SnP₂Se₆

  • Authors: Sangwan, V. K., Chica, D. G., Chu, T.-C., Cheng, M., Quintero, M. A., Hao, S., Mead, C. E., Choi, H., Zu, R., Sheoran, J., He, J., Liu, Y., Qian, E., Laing, C. C., Kang, M.-A., Gopalan, V., Wolverton, C., Dravid, V. P., Lauhon, L. J., Hersam, M. C., Kanatzidis, M. G.

  • Journal: Science Advances

  • Year: 2024

Optical second harmonic generation in anisotropic multilayers with complete multireflection of linear and nonlinear waves using SHAARP.ml package

  • Authors: Zu, R., Wang, B., He, J., Weber, L., Saha, A., Chen, L.-Q., Gopalan, V.

  • Journal: NPJ Computational Materials

  • Year: 2024

Perspectives and progress on wurtzite ferroelectrics: Synthesis, characterization, theory, and device applications

  • Authors: Casamento, J., Baksa, S. M., Behrendt, D., Calderon, S., Goodling, D., Hayden, J., He, F., Jacques, L., Lee, S. H., Smith, W., Suceava, A., Tran, Q., Zheng, X., Zu, R., Beechem, T., Dabo, I., Dickey, E. C., Esteves, G., Gopalan, V., Henry, M. D., Ihlefeld, J. F., Jackson, T. N., Kalinin, S. V., Kelley, K. P., Liu, Y., Rappe, A. M., Redwing, J., Trolier-McKinstry, S., Maria, J.-P.

  • Journal: Applied Physics Letters

  • Year: 2024

Sajjad Ali | Computational Methods | Best Researcher Award

Dr. Sajjad Ali | Computational Methods | Best Researcher Award

PHD at Abdul Wali Khan University Mardan, Pakistan

Dr. Sajjad Ali is a Lecturer in Mathematics at Shaheed Benazir Bhutto University Sheringal, Dir (Upper), Pakistan. He received his Ph.D. in Mathematics from Abdul Wali Khan University Mardan in 2019. With over a decade of teaching experience, Dr. Ali specializes in Bio-Mathematics, Fractional Differential Equations, and Advanced Homotopy Methods. He supervises M.Phil and Ph.D. students and is involved in departmental administration. His research interests include mathematical modeling and computational methods. Dr. Ali is proficient in MATLAB, MS Office, Excel, and LaTeX, and he is fluent in Urdu, English, Pashto, and Khohar.

Professional Profiles

Education

Ph.D. in Mathematics (2015 – 2019) Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan M.Phil in Mathematics (2009 – 2012) Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan Bachelor of Education (B.Ed) (2007 – 2008) Allama Iqbal Open University, Islamabad, Pakistan Master of Science in Mathematics (2005 – 2007) University of Malakand Chakdara, Khyber Pakhtunkhwa, Pakistan Bachelor of Science in Mathematics (2002 – 2004) Government Degree College Tangi, Charsadda, Khyber Pakhtunkhwa, Pakistan F.Sc. Pre-Engineering (2000 – 2002) Government Degree College Tangi, Charsadda, Khyber Pakhtunkhwa, Pakistan Metric in Science (1999 – 2000) Government School No.2 Tangi, Charsadda, Khyber Pakhtunkhwa, Pakistan.

Skills

Research in Mathematics Teaching and Administrative Skills Software MATLAB MS Office Excel LaTeX

Work History

Shaheed Benazir Bhutto University Sheringal, Dir (Upper), Pakistan Lecturer in Mathematics (2011 – Present) Teaching Ph.D./M.Phil courses in Bio-Mathematics, Fractional Differential Equations, and Advanced Homotopy Methods Teaching BS courses in Partial Differential Equations and Ordinary Differential Equations Supervising M.Phil and Ph.D. research students M.Phil/Ph.D. Coordinator in the Department of Mathematics Member of the Departmental Admission Committee Warden of Ihsan Boys Hostel Tameer e Seerat Degree College, Mardan Campus, Pakistan Lecturer in Mathematics (2010 – 2011) Taught graduate-level Mathematics Hostel Warden Farabi Degree College, Peshawar, Pakistan Lecturer in Mathematics (2009 – 2010) Taught graduate-level Mathematics Government Degree College, Tangi, Charsadda, Pakistan Lecturer in Mathematics (2007 – 2009) Taught graduate-level Mathematics

Interests

Mathematical modeling, Computational methods

Awards

Top Position Holder in Master of Mathematics at University of Malakand (2007) Awardee as Lecturer in Mathematics through the Higher Education Commission Pakistan (2008)

Research Focuse

Dr. Sajjad Ali’s research focuses on the numerical treatment and computational solutions of fractional order differential equations, with applications in reaction-diffusion systems, biological population models, and ion-acoustic waves. His work includes developing iterative and stable methods for solving boundary value problems of nonlinear fractional differential equations. Dr. Ali has collaborated extensively with international researchers, contributing to journals such as Chaos, Solitons & Fractals and the Journal of Advanced Research. His studies also explore the stability analysis and exact solutions of complex mathematical models, emphasizing fractional calculus and its applications in various scientific and engineering problems.

Publications

  1. Nonlinear coupling of upper-hybrid waves with lower-hybrid waves in a degenerate dense plasma, Publication date: 2021.
  2. Unstable mode of ion-acoustic waves with two temperature q-nonextensive distributed electrons, Publication date: 2021.
  3. Computation of solution to fractional order partial reaction diffusion equations, Publication date: 2020.
  4. On stable iterative solutions for a class of boundary value problem of nonlinear fractional order differential equations, Publication date: 2019.
  5. Computation of iterative solutions along with stability analysis to a coupled system of fractional order differential equations, Publication date: 2019.
  6. Approximate solutions to nonlinear fractional order partial differential equations arising in ion-acoustic waves, Publication date: 2019.
  7. Stable monotone iterative solutions to a class of bound-ary value problems of nonlinear fractional order differential equations, Publication date: 2019.
  8. Monotone iterative technique and Ulam-Hyers stability analysis for nonlinear fractional order differential equations with integral boundary value conditions, Publication date: 2019.
  9. Optimum solutions of space fractional order diffusion equation, Publication date: 2018.
  10. On Approximate solutions of fractional Order partial differential equations, Publication date: 2018.
.