Ziyao Jie | Experimental methods | Best Researcher Award

Dr. Ziyao Jie | Experimental methods | Best Researcher Award

Postdoc at State Grid Jibei Electric Power Co., Ltd. Research Institute in China

Ziyao Jie is a postdoctoral researcher at the State Grid Jibei Electric Power Research Institute. He holds a Ph.D. in Electrical Engineering from Tsinghua University, where his research centered on the microwave plasma-based synthesis of nanomaterials for lithium-ion battery applications. Throughout his academic career, Ziyao has made notable contributions to sustainable energy and plasma science, with a focus on improving energy storage technologies. His work on graphene-coated silicon nanomaterials addresses critical issues in battery performance, such as energy capacity and cycling stability. Ziyao’s research has been widely recognized, with multiple patents and publications in high-impact journals.

Profile:

Education:

Ziyao Jie earned his Ph.D. in Electrical Engineering from Tsinghua University, where he specialized in plasma science and nanomaterials synthesis under the guidance of Professor Guixin Zhang. His doctoral thesis focused on the development of microwave plasma methods for producing graphene-coated silicon nanoparticles, designed to enhance lithium-ion battery performance. During his studies, Ziyao gained a comprehensive understanding of high-voltage technologies, nanomaterial properties, and energy storage solutions, which equipped him to tackle real-world challenges in sustainable energy. His academic excellence is reflected in his deep knowledge of plasma diagnostics and high-temperature material synthesis.

Professional Experience:

Ziyao Jie has amassed significant experience in plasma science and energy storage. Following his doctoral research at Tsinghua University, where he developed innovative methods for synthesizing advanced materials for batteries, he continued as a postdoctoral researcher at the State Grid Jibei Electric Power Research Institute. His current work focuses on high-voltage and energy storage systems, contributing to the development of large-scale, sustainable energy solutions. Ziyao has collaborated on key projects such as the Beijing Science and Technology Planning Project, and his expertise spans the areas of nanomaterial synthesis, waste treatment with plasma, and renewable energy applications.

Research focus:

Ziyao Jie’s research focuses on the intersection of plasma science, nanomaterials, and sustainable energy. His primary area of interest is the synthesis of nanomaterials using microwave plasma technologies, with a particular focus on developing advanced materials for energy storage, such as graphene-coated silicon nanoparticles for lithium-ion batteries. His work aims to address key challenges in energy density, stability, and scalability for future battery technologies. Ziyao is also involved in developing plasma-based waste treatment systems, including medical waste management, using high-temperature plasma torches. His research is distinguished by its potential to revolutionize both energy storage and environmental sustainability.

Awards and Honors:

Ziyao Jie has received numerous accolades for his groundbreaking work in plasma science and nanomaterials. His research on microwave plasma-based synthesis earned him recognition in energy storage circles, particularly for his contributions to improving lithium-ion battery technology. Ziyao was a participant in the Beijing Science and Technology Planning Project, which recognized his innovative work on high-energy and high-voltage technologies. Additionally, his patented inventions, which include advanced methods for medical waste treatment and nanomaterial applications, have further established his reputation as a leading researcher. Ziyao’s contributions have also led to high citation indices, highlighting his influence in the academic community.

Publication Top Notes:

  • Mechanisms of Gas Temperature Variation of the Atmospheric Microwave Plasma Torch
    Z. Jie, C. Liu, S. Huang, G. Zhang
    Journal of Applied Physics, 129 (23), 2021
    Citations: 12
  • Microwave Plasma Torches for Solid Waste Treatment and Vitrification
    Z. Jie, C. Liu, D. Xia, G. Zhang
    Environmental Science and Pollution Research, 30 (12), 32827-32838, 2023
    Citations: 10
  • Imaging Diagnostics and Gas Temperature Measurements of Atmospheric-Microwave-Induced Air Plasma Torch
    S. Huang, C. Liu, Z. Jie, G. Zhang
    IEEE Transactions on Plasma Science, 48 (6), 2153-2162, 2020
    Citations: 10
  • Polymer Dielectrics with Outstanding Dielectric Characteristics via Passivation with Oxygen Atoms through Cโ€“F Vacancy Carbonylation
    T.Y. Wang, X.F. Li, Z. Jie, B.X. Liu, G. Zhang, J.B. Liu, Z.M. Dang, Z.L. Wang
    Nano Letters, 23 (18), 8808-8815, 2023
    Citations: 8
  • An Atmospheric Microwave Plasma-Based Distributed System for Medical Waste Treatment
    Z. Jie, C. Liu, D. Xia, G. Zhang
    Environmental Science and Pollution Research, 30 (17), 51314-51326, 2023
    Citations: 6
  • Surface-Wave-Sustained Plasma Synthesis of Graphene@Feโ€“Si Nanoparticles for Lithium-Ion Battery Anodes
    Z. Jie, Z. Zhang, X. Bai, W. Ma, X. Zhao, Q. Chen, G. Zhang
    Applied Physics Letters, 123 (11), 2023
    Citations: 3
  • Determination of 915-MHz Atmospheric Pressure Air Microwave Plasma Torch (MPT) Parameters
    Z. Jie, C. Liu, D. Xia, Z. Zhang, X. Zhao, G. Zhang
    IEEE Transactions on Plasma Science, 51 (2), 456-465, 2023
    Citations: 2
  • The Treatment of Medical Waste by Atmospheric Microwave Plasma
    D. Xia, C. Liu, Z. Jie, G. Zhang
    2021 IEEE International Conference on Plasma Science (ICOPS), 2021
    Citations: 2
  • Microwave Plasma Torch for Solid Waste Treatment
    Z. Jie, C. Liu, D. Xia, G. Zhang
    IET Digital Library, 2021
    Citations: 2
  • Continuous Batch Synthesis with Atmospheric-Pressure Microwave Plasmas
    Z. Jie, T.Y. Wang, S. Huang, X. Bai, W. Ma, G. Zhang, N. Luo
    iScience, 27 (8), 2024
    Citations: N/A

Conclusion:

Ziyao Jie is a strong candidate for the Best Researcher Award, with his groundbreaking contributions in plasma science and energy storage technologies. His research has direct implications for sustainable energy solutions, positioning him at the forefront of innovations in high-energy physics and computational science. His achievements, particularly his patents and numerous high-impact publications, showcase his potential to make lasting contributions to academia and industry, making him highly suitable for this prestigious award.

 

Priyanka Sahu | Experimental methods | Young Scientist Award

Dr. Priyanka Sahu | Experimental methods | Young Scientist Award

Assistant Professor at Rajiv Gandhi University of Knowledge of Technologies-RK Valley (AP-IIIT RK Valley), India

Dr. Priyanka Sahu is an accomplished academic and researcher, currently serving as an Assistant Professor in the Department of Electronics and Communication Engineering at Rajiv Gandhi University of Knowledge Technologies (AP-IIIT), Idupulapaya, Andhra Pradesh. With a solid foundation in Physics and Astronomy (Materials Science), she holds an M.Tech degree from NIT Rourkela and a Ph.D. from IIT Indore. Her research focuses on the development of high entropy alloys and soft magnetic materials, with expertise in experimental methodologies such as sol-gel auto-combustion and mechanical alloying. Dr. Sahu has published numerous high-impact papers, presented at international conferences, and received prestigious accolades like the Best Researcher Award and Best Oral Presentation. She is a passionate educator and an innovative thinker, contributing significantly to both research and academia.

Profile:

Education

Dr. Priyanka Sahu has pursued an impressive academic journey, earning her Ph.D. in Materials Science from the Indian Institute of Technology Indore (IITI) in 2023, where her dissertation focused on developing and characterizing high-entropy soft magnetic alloys. She holds an M.Tech (Research) degree in Physics and Astronomy with a specialization in Materials Science from the National Institute of Technology Rourkela (NITR) in 2017, during which she studied the electrical and magnetic properties of modified strontium hexaferrite. Prior to this, she completed her Bachelor of Engineering in Electronics and Telecommunication at the Government Engineering College Bilaspur in 2014, following a diploma in the same discipline from the Government Polytechnic College Ambikapur in 2011. Throughout her academic journey, Dr. Sahu has consistently maintained high honors and distinctions, showcasing her dedication to research and learning.

 

Professional experience

Dr. Priyanka Sahu has accumulated diverse teaching and research experience. She is currently serving as an Assistant Professor in the Department of Electronics and Communication Engineering at Rajiv Gandhi University of Knowledge Technologies (AP-IIIT), Idupulapaya, Andhra Pradesh, since March 2024. Prior to this, Dr. Sahu worked as a Teaching Assistant and researcher at IIT Indore from 2017 to 2023, during which she handled multiple labs and courses related to physical metallurgy and material science. Her research experience also includes working at NIT Rourkela in a Physics Laboratory. Dr. Sahu has expertise in handling various high-end instruments such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC), which are crucial in material characterization. She has also participated in numerous national and international conferences as a presenter and invited speaker, furthering her knowledge and sharing insights into her specialized research areas.

Research focus

Dr. Priyanka Sahu’s research is centered around the development of advanced materials, particularly high-entropy alloys (HEAs), soft magnetic materials, and magnetocaloric materials. Her work explores novel synthesis methods, including mechanical alloying and sol-gel auto-combustion, to develop new materials with superior thermal, magnetic, and electrical properties. Dr. Sahu has extensively studied the microstructural and magnetic behaviors of multi-component alloys, investigating the influence of elements like Si and Mn on phase evolution and magnetic properties. She also focuses on thermodynamic modeling using Redlich-Kister formalism and Miedema’s semi-empirical models for predicting phase formations in these alloys. Her research aims to apply theoretical models to experimental data for better material characterization, especially in high-entropy amorphous alloys. Dr. Sahu’s work is highly interdisciplinary, impacting fields like nanotechnology, metallurgy, and condensed matter physics.

Award and Recognition

Dr. Priyanka Sahu has received numerous accolades throughout her academic and professional career. She was awarded the prestigious “Best Researcher Award” at the 16th edition of International Research Awards in Atomic, Molecular, and Optical Physics in 2024. Her outstanding oral presentation in the “Progress in Metallurgy & Materials (ISPMM-2023)” at IIT Indore earned her a Best Oral Presentation award. Additionally, she secured the 1st runner-up spot in poster presentation during the Research and Industrial Conclave (RIC-2023) at IIT Indore. Dr. Sahu has also received multiple honorariums for her contributions to various programs such as the QIP program at IIT Indore and TEQIP-III in 2018. She was recognized for her early academic excellence with a merit scholarship at Government Polytechnic College Ambikapur, and she ranked 1st in class during her diploma years. These honors reflect her commitment to research and academia.

Publication Top Notes:

  • Synthesis and characterization of hydrogenated novel AlCrFeMnNiW high entropy alloy
    โœ๏ธ SK Dewangan, VK Sharma, P Sahu, V Kumar
    ๐Ÿ“˜ International Journal of Hydrogen Energy, 45(34), 16984-16991, 2020, cited 62 times
  • Investigating the effect of multiple grainโ€“grain interfaces on electric and magnetic properties of [50 wt% BaFe12O19โ€“50 wt% Na0.5Bi0.5TiO3] composite system
    โœ๏ธ R Pattanayak, R Muduli, RK Panda, T Dash, P Sahu, S Raut, S Panigrahi
    ๐Ÿ“˜ Physica B: Condensed Matter, 485, 67-77, 2016, cited 42 times
  • Microstructure and magnetic behavior of FeCoNi (Mnโ€“Si) x (x= 0.5, 0.75, 1.0) high-entropy alloys
    โœ๏ธ P Sahu, S Solanki, S Dewangan, V Kumar
    ๐Ÿ“˜ Journal of Materials Research, 34(5), 829-840, 2019, cited 30 times
  • Dielectric, ferroelectric and impedance spectroscopic studies in TiO2-doped AgNbO3 ceramic
    โœ๏ธ R Muduli, R Pattanayak, S Raut, P Sahu, V Senthil, S Rath, P Kumar, …
    ๐Ÿ“˜ Journal of Alloys and Compounds, 664, 715-725, 2016, cited 21 times
  • Effect of grain size on electric transport and magnetic behavior of strontium hexaferrite (SrFe12O19)
    โœ๏ธ P Sahu, SN Tripathy, R Pattanayak, R Muduli, N Mohapatra, S Panigrahi
    ๐Ÿ“˜ Applied Physics A, 123, 1-10, 2017, cited 15 times
  • Microstructural, magnetic, and geometrical thermodynamic investigation of FeCoNi (MnSi) x (0.0, 0.1, 0.25, 0.5, 0.75, 1.0) high entropy alloys
    โœ๏ธ P Sahu, S Samal, V Kumar
    ๐Ÿ“˜ Materialia, 18, 101133, 2021, cited 7 times
  • Impact of Si and Mg on Microstructural and Magnetic Behavior of Fe-Co-Ni (Mg-Si)x (x = 0.00,0.1,0.2) Multicomponent Alloys
    โœ๏ธ P Sahu, AS Bagri, MD Anoop, M Kumar, V Kumar
    ๐Ÿ“˜ Silicon, 12, 893-902, 2020, cited 7 times
  • Microstructural, magnetic, and geometrical thermodynamic investigation of FeCoNi (MnSi) x (0.0, 0.1, 0.25, 0.5, 0.75, 1.0) high entropy alloys
    โœ๏ธ P Sahu, S Samal, V Kumar
    ๐Ÿ“˜ Materialia, 18, 101133, Patent NO
  • Microstructure, Non-isothermal Crystallization Kinetics and Magnetic Behaviour Study of [FeCoNi100-x(SiMn)x] High Entropy Amorphous Alloys Synthesized by โ€ฆ
    โœ๏ธ P Sahu, S Samal, V Kumar
    ๐Ÿ“˜ Metals and Materials International, 29(9), 2684-2709, 2023, cited 3 times
  • Phase Evolution and Soft Magnetic Behavior of Mechanically Alloyed Feโ€“Coโ€“Ni Medium Entropy Alloy at Different Disk Angular Velocity
    โœ๏ธ P Sahu, S Samal, V Kumar
    ๐Ÿ“˜ Transactions of the Indian Institute of Metals, 76(11), 3065-3078, 2023, cited 2 times
  • Investigation of the structural, electrical, and magnetic behavior of Co3+-Ti4+ doped strontium hexaferrite: validation of measured and theoretical models
    โœ๏ธ P Sahu, PK Sahu, S Panigrahi
    ๐Ÿ“˜ Journal of Materials Science: Materials in Electronics, 35(10), 709, 2024, cited 1 time
  • Influence of Si and Mn on the Phase Formation, Crystallization Kinetics, and Enhanced Magnetic Properties of Mechanically Alloyed NiCoFe(SiMn)x High Entropy โ€ฆ
    โœ๏ธ P Sahu, S Samal, V Kumar
    ๐Ÿ“˜ Silicon, 15(12), 5367-5392, 2023, cited 1 time
  • An assessment of the mechanically alloyed equiatomic FeCoNiMnSi high entropy amorphous alloy for non-isothermal crystallization kinetics and magnetocaloric refrigeration โ€ฆ
    โœ๏ธ P Sahu, S Samal, V Kumar
    ๐Ÿ“˜ Materials Characterization, 216, 114269, 2024

Conclusion

Overall, Dr. Priyanka Sahu is a well-rounded researcher with a solid background in materials science, excellent technical skills, a significant publication record, and previous awards. Her contributions to the field of high entropy alloys and magnetocaloric materials are impressive and impactful. While focusing on securing research funding and pursuing interdisciplinary research could enhance her profile further, she is undoubtedly a deserving candidate for the “Best Researcher Award.”