Nahid Chaudhary | Experimental methods | Best Researcher Award

Mrs. Nahid Chaudhary | Experimental methods | Best Researcher Award

Indian Institute of Technology Delhi | India

Dr. Nahid Chaudhary is a highly accomplished researcher and engineer specializing in nanoelectronics and semiconductor manufacturing. With a profound focus on the growth of 2D materials and van der Waals heterostructures, he has demonstrated exceptional skills in semiconductor device fabrication and advanced characterization techniques. He is dedicated to advancing the field of nanoelectronics, with a particular emphasis on sensors, optoelectronic devices, and semiconductor industries. Dr. Chaudhary is known for his interdisciplinary collaboration and innovative contributions to device performance and reliability.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Chaudhary’s academic journey began with a B.Tech in Electronics and Communication Engineering from Uttar Pradesh Technical University (UPTU), where he graduated with a strong 80.04%. He further advanced his knowledge with an M.Tech in Nanoscience and Nanotechnology from Guru Gobind Singh Indraprastha University (GGSIU) with an impressive 80% score. His Ph.D. in Nanotechnology at Jamia Millia Islamia, New Delhi, focused on the synthesis and applications of 2D MoS2 nanosheets for optical sensing, supported by the Inspire Fellowship from the Department of Science and Technology (DST).

Professional Endeavors 💼

Dr. Chaudhary’s current role as a Postdoctoral Fellow at the Indian Institute of Technology (IIT), Delhi, sees him leading cutting-edge research in Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD) growth of 2D materials and van der Waals heterostructures. His professional work has directly impacted the advancement of semiconductor devices through innovative material development for sensors and optoelectronic devices. His contributions have spanned both academia and industry, where his work on next-generation sensors and semiconductor applications is highly regarded.

Contributions and Research Focus 🔬

Dr. Chaudhary’s research focuses on the development and growth of 2D materials, particularly in the fields of sensors, photodetectors, and supercapacitors. His work on van der Waals heterostructures has proven vital in enhancing device performance and reliability. Through his Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD) techniques, he has developed materials with promising applications in semiconductor devices. His key research has involved the optical sensing capabilities of MoS2 nanosheets, which have applications in biosensors and photocatalysis.

Impact and Influence 🌍

Dr. Chaudhary’s impact in the field of nanoelectronics is evident through his innovative research and its direct application to cutting-edge technologies. His work on photodetectors and supercapacitors is transformative, addressing crucial issues in the semiconductor industry. His research into 2D materials such as MoS2 and MoTe2 has laid the groundwork for next-generation sensors and optoelectronic devices. Dr. Chaudhary is recognized for his collaborative efforts and interdisciplinary approach, contributing to the global scientific community.

Research Skills 🛠️

Dr. Chaudhary possesses extensive expertise in Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD), crucial for the synthesis of 2D materials. He is proficient in advanced characterization techniques including X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and UV-Vis Spectrophotometry. His skills extend to nanofabrication through maskless lithography, wet chemical etching, and photolithography, positioning him as a key innovator in semiconductor device fabrication. Additionally, his proficiency in cleanroom protocols and material processing ensures the development of high-performance devices.

Teaching Experience 🍎

Dr. Chaudhary is deeply committed to mentoring and teaching the next generation of engineers and researchers. He actively participates in training and mentorship programs in nanoelectronics and semiconductor technology, guiding students and young researchers on cutting-edge research techniques. His contributions extend to teaching at IIT Delhi, where he engages in interdisciplinary teaching and research-based courses, offering students hands-on experience in advanced material synthesis and device fabrication.

Awards and Honors 🏆

Dr. Chaudhary’s exceptional contributions have earned him several prestigious awards:

  • Inspire Fellowship from the Department of Science and Technology (DST) for his Ph.D. research.
  • Best Poster Award at ETAMS 2020 for his work on MoS2 Nanosheets for photodetector applications.
  • Best Poster Award at Nano Road Show 2020 for his groundbreaking research on MoS2-PANI Hybrid Structures for high photoresponsive properties.

His awards demonstrate his leading position in nanotechnology research.

Legacy and Future Contributions 🌱

Dr. Chaudhary is poised to leave a lasting legacy in the field of nanoelectronics. His research on 2D materials is setting the foundation for the future of semiconductor devices, particularly in photodetectors, supercapacitors, and biosensors. Looking ahead, Dr. Chaudhary aims to continue pushing the boundaries of material science and device performance. He envisions a future where his innovations can transform industries such as IoT and optical sensing, thereby shaping the next wave of technological advances in nanotechnology. His ongoing contributions will undoubtedly continue to influence and inspire researchers in the field for years to come.

Publication Top Notes

Utilizing the Ability of Few-Layer MoS2 Integrated with MOCVD-Grown ZnGa2O4 for Thermally Stable Deep Ultraviolet Detection Performance

  • Authors: T Khan, N Chaudhary, RH Horng, R Singh
    Journal: ACS Applied Electronic Materials, 6 (10), 7600-7610
    Year: 2024

High-Performance Visible-to-SWIR Photodetector Based on the Layered WS2 Heterojunction with Light-Trapping Pyramidal Black Germanium

  • Authors: K Bhattacharya, N Chaudhary, P Bisht, B Satpati, S Manna, R Singh, …
    Journal: ACS Applied Materials & Interfaces, 16 (36), 48517-48525
    Year: 2024

Quasi-dry layer transfer of few-layer MBE-grown MoTe2 sheets for optoelectronic applications

  • Authors: N Chaudhary, T Khan, K Bhatt, R Singh
    Journal: Sensors and Actuators A: Physical, 115727
    Year: 2024

Gamma-induced stress, strain and p-type doping in MBE-grown thin film MoTe2

  • Authors: N Chaudhary, K Bhatt, T Khan, R Singh
    Journal: Physical Chemistry Chemical Physics, 26 (34), 22529-22538
    Year: 2024

Comparative study of photocatalytic activity of hydrothermally synthesized ultra-thin MoS2 nanosheets with bulk MoS2

  • Authors: N Chaudhary, K Raj, A Harikumar, H Mittal, M Khanuja
    Journal: AIP Conference Proceedings, 2276 (1)
    Year: 2020

 

Syed Hamza Safeer Gardezi | Experimental methods | Best Researcher Award

Dr. Syed Hamza Safeer Gardezi | Experimental methods | Best Researcher Award

Quaid i Azam Universty, Islamabad | Pakistan

Dr. Syed Hamza Safeer Gardezi is an accomplished academic with a rich background in Physics. His academic journey began with a Bachelor’s degree in Science from the University of Punjab, Lahore, Pakistan. He then pursued M.Sc. and M.Phil. degrees in Physics from Quaid-i-Azam University, Islamabad, Pakistan, followed by a Ph.D. from the Pontifical Catholic University of Rio de Janeiro, Brazil. Dr. Gardezi’s research focused on Atomically Thin Semiconducting Transition-Metal Dichalcogenides and their electro-optical properties. With a Post-Doctoral fellowship at the Brazilian Center for Research in Physics (CBPF), Dr. Gardezi now serves as an Assistant Professor at Quaid-i-Azam University, Islamabad.

👨‍🎓Profile

Google scholar

Scopus

Orcid

🎓 Early Academic Pursuits

Dr. Gardezi’s academic journey began with a solid foundation in Physics. His undergraduate studies in Mathematics and Physics at the University of the Punjab set the stage for advanced degrees. He continued his pursuit of knowledge through M.Sc. and M.Phil. degrees at Quaid-i-Azam University, where his thesis research focused on Superconductor materials. His fascination with nanomaterials, especially Transition Metal Dichalcogenides (TMDs), led him to Brazil, where he completed his Ph.D. research on MoS2, WS2, and related materials.

💼 Professional Endeavors

Dr. Gardezi’s professional career began as a Lecturer at the Global System of Integrated Studies in Islamabad, Pakistan. He later joined Quaid-i-Azam University as an Assistant Professor, where he has contributed significantly to the Department of Physics. His professional pursuits extend internationally, particularly during his Post-Doctoral research at CBPF in Brazil, focusing on the Spin Hall Effect and Valley Hall Effect in heterostructures like YIG/MoS2.

🔬 Contributions and Research Focus

Dr. Gardezi’s primary research interests are in the synthesis and characterization of two-dimensional materials like TMDs, Graphene, and their heterostructures. He is particularly interested in chemical vapor deposition (CVD) techniques to synthesize these materials and study their optical and magnetic properties. Additionally, his work on high-temperature superconductors and solar cells highlights his commitment to exploring green technologies for sustainable energy. His focus also includes the study of defects and Raman scattering mechanisms in nanomaterials.

🌍 Impact and Influence

Dr. Gardezi has significantly influenced nanotechnology https://hep-conferences.sciencefather.com/awards-winners/and material science research, particularly in semiconducting materials and superconductors. His work on TMDs has contributed to the broader understanding of two-dimensional materials and their potential applications in electronics, photonics, and energy solutions. His research papers have been published in leading journals and widely cited by fellow scientists, helping drive forward the development of next-generation materials and technologies.

🧪 Research Skills

Dr. Gardezi is well-versed in experimental techniques and synthesis methods, including:

  • Chemical Vapor Deposition (CVD) for 2D-materials.
  • Raman and Photoluminescence (PL) Spectroscopy.
  • X-ray Diffraction (XRD) analysis.
  • Magnetic Susceptibility and Four Probe Resistivity Measurements.
  • Electron Beam Lithography and Photolithography for device fabrication.

These skills position him as a leading researcher in nanomaterials and advanced materials science.

👨‍🏫 Teaching Experience

As an Assistant Professor at Quaid-i-Azam University, Dr. Gardezi has taught various undergraduate and graduate-level courses in Physics. Some of the courses he has taught include:

  • Introductory Mechanics (Undergraduate).
  • Experimental Physics Methods and Statistical Physics (M.Phil./Ph.D. level).
  • Electromagnetism and Atomic and Molecular Physics.

In addition to his academic work, he has also contributed to laboratory sessions as a Teaching Intern at PUC-Rio in Brazil.

🏅 Awards and Honors

Dr. Gardezi has received multiple scholarships and recognitions throughout his career, including the CNPq Scholarship for his Postdoctoral Research. His contributions to material science and nanotechnology have been acknowledged at various international conferences and by leading scientific organizations, showcasing his growing impact on the global scientific community.

🕰️ Legacy and Future Contributions

Looking forward, Dr. Gardezi aims to continue pushing the boundaries of material synthesis and characterization. His ongoing research into TMDs and superconductors is set to lead to innovations in quantum computing, energy storage, and photonics. His work not only paves the way for future breakthroughs in sustainable energy solutions but also holds potential for the next generation of electronic devices. His legacy will likely be shaped by his contributions to green technologies and nanoscience.

Publications Top Notes

Enhancing Superconductivity in Cu1/2Tl1/2Ba2Ca2Cu3O10−δ with Graphene Incorporation: A Comprehensive Study

  • Authors: Syed Hamza Safeer, Nizar Saeed, Abida Saleem, Kashif Naseem, Nawazish A. Khan
    Journal: Langmuir
    Year: 2025

Assessment of the importance and catalytic role of chromium oxide and chromium carbide for hydrogen generation via hydrolysis of magnesium

  • Authors: Fei Qin, Yue Zhang, Kashif Naseem, Zhanjun Chen, Suo Guoquan, Waseem Hayat, Syed Hamza Safeer Gardezi
    Journal: Nanoscale
    Year: 2024

Photoluminescent and Magnetic Properties of Mononuclear Lanthanide-Based Compounds Containing the Zwitterionic Form of 4-Picolinic Acid as a Ligand

  • Authors: Esther Areas, Bruno Rodrigues, Ana Carolina do Nascimento, Henrique C. S. Junior, Glaucio Braga Ferreira, Fabio Miranda, Flavio Garcia, Syed Hamza Safeer, Stéphane Soriano, Guilherme Guedes
    Journal: Journal of the Brazilian Chemical Society
    Year: 2024

Exploring the magnetic behavior of potassium-doped Cu0.5Tl0.5Ba2Ca2Cu3-xKxO10-δ (x=0, 1, 2.5, 3) superconductors

  • Authors: Syed Hamza Safeer, Sadia Arooj, Anila Kanwal, Zil e Huma, Flavio Garcia
    Journal: Physica B: Condensed Matter
    Year: 2024

Automated mechanical exfoliation technique: a spin pumping study in YIG/TMD heterostructures

  • Authors: Rodrigo Torrão Victor, John Fredy Ricardo Marroquin, Syed Hamza Safeer, Danian Alexandre Dugato, Braulio Soares Archanjo, Luiz Carlos Sampaio, Flavio Garcia, Jorlandio Francisco Felix
    Journal: Nanoscale Horizons
    Year: 2023

 

 

 

Muhammad Ijaz | Experimental methods | Best Researcher Award

Mr. Muhammad Ijaz | Experimental methods | Best Researcher Award

Institute of Physics, Gomal University | Pakistan

Mr. Muhammad Ijaz, a Ph.D. scholar in Material Science at the Institute of Physics, Gomal University, D.I. Khan, Pakistan, has demonstrated profound academic and research expertise. His research primarily focuses on the development of ferrite-based nanostructure materials and their potential applications in magnetic and electronic devices. With an M.Phil. in Physics and a Bachelor’s degree in Physics, Mr. Ijaz has excelled academically and is committed to advancing material science through innovative research.

👨‍🎓Profile

Scopus

Early Academic Pursuits 📚

Mr. Ijaz began his academic journey with a strong foundation in Physics, earning a First Division in his Bachelor’s and Master’s degrees from University of Sargodha and Gomal University, respectively. He further pursued Material Science in his M.Phil., where his research interests took shape, particularly in nanomaterials and their magnetic properties.

Professional Endeavors 💼

In addition to his academic qualifications, Mr. Ijaz has significant professional experience. He served as a Lecturer (Internship basis) in Govt. Degree College Liaqatabad and is currently a Lecturer in Physics at Govt. Associate College Kundian. His dedication to teaching and the academic growth of his students highlights his professionalism and commitment to education.

Contributions and Research Focus 🧪

Mr. Ijaz’s research interests focus on the development of ferrite-based nanostructures and their various applications, particularly in magnetic devices, electronics, and sensors. His projects include the structural study of polymorphic HoVO4 single crystals and the impact of cobalt on the magnetic properties of BaFe hexaferrites. These areas of research are critical for the advancement of nanotechnology, functional materials, and the broader field of material science.

Impact and Influence 🌍

Mr. Ijaz has made a notable impact in the field of material science through his research, which has been published in several prestigious journals. His work on rare-earth-doped ferrites, nanoparticles, and sensor technologies contributes significantly to the understanding and development of magnetic and dielectric materials. This research is integral to advancing industries such as electronics, energy storage, and sensor technology.

Academic Citations 📈

Mr. Ijaz’s publications include cutting-edge research on materials like BaFe hexaferrites, doped SnO2 nanoparticles, and Ca-Cu-based ferrites. Although his citation count is still growing, his works are gradually gaining recognition in scientific communities, especially in areas related to magnetic properties and sensor applications. The citation impact of his work reflects its relevance in advancing modern material science.

Research Skills 🧑‍🔬

Mr. Ijaz possesses a comprehensive set of scientific skills essential for his research, including:

  • UV-VIS Spectroscopy
  • Fourier Transform Infrared Spectroscopy (FTIR)
  • Scanning Electron Microscopy (SEM)
  • X-ray Diffraction (XRD)
  • Energy Dispersive X-ray (EDX) Spectroscopy

These advanced techniques allow him to explore the structural, morphological, and magnetic properties of materials with precision and detail, critical for the success of his projects in nanomaterials and ferrite-based technologies.

Teaching Experience 🏫

As a Lecturer in Physics at Govt. Associate College Kundian, Mr. Ijaz teaches undergraduate students, imparting knowledge in core areas such as material science and applied physics. His previous role as a Lecturer in Physics at Govt. Degree College Liaqatabad also reflects his commitment to nurturing young scientists and contributing to the academic development of his students.

Awards and Honors 🏆

Though Mr. Ijaz has not listed specific awards in his profile, his academic performance, as evidenced by his first division in all his degrees, demonstrates his excellence and dedication. Given his ongoing contributions to material science, further recognition and honors are likely to follow as his research continues to gain prominence.

Legacy and Future Contributions 🔮

Mr. Ijaz is poised to leave a lasting legacy in the field of material science, particularly in the development of nanomaterials and magnetic materials. His research is set to influence future technologies in fields such as sensor applications, energy storage, and nanotechnology. With continued work and publication, his contribution to advancing functional materials in both academic and practical contexts will be highly influential.

Publications Top Notes

Impact of cobalt substitutions on optical, magnetic, dielectric, and structural properties of BaFe11.6-xAl0.4CoxO19 hexaferrites prepared by Co-precipitation process followed by rapid sonochemical synthesis

  • Authors: Ijaz, M., Ullah, H., Al-Hazmi, G.A.A.M., Althomali, R.H., Asif, S.U.
    Journal: Materials Chemistry and Physics
    Year: 2024, 321, 129504

Cu2+/Dy3+ dual doped calcium based Ca1-xCuxFe12-xDyxO19 hexaferrites: Microstructural and magnetic properties for magnetic applications

  • Authors: Ijaz, M., Shaheen, N., Saeedi, A.M., Ullah, H., Asif, S.U.
    Journal: Materials Science and Engineering: B
    Year: 2024, 304, 117341

Microstructural, morphological and magnetic behaviour of Al3+ replaced BaFe11.5Co0.5O19 hexaferrites synthesized via sol-gel auto combustion route

  • Authors: Ijaz, M., Asif, S.U., Solre, G.F.B., Al-Asbahi, B.A., Ullah, H.
    Journal: Physica Scripta
    Year: 2024, 99(5), 055959

Structural, dielectric and magnetic properties of terbium doped strontium spinel ferrite (SrFe2O4) synthesized by sol-gel method

  • Authors: Shaheen, R., Ullah, H., Moharam, M.M., Asif, S.U., Tahir, H.M.
    Journal: Journal of Rare Earths
    Year: 2024

Co-precipitation method followed by ultrafast sonochemical synthesis of aluminium doped M type BaFe11.4-xAlxCo0.6O19 hexaferrites for various applications

  • Authors: Ijaz, M., Ullah, H., Ali Al-Asbahi, B., Abbas, Z., Asif, S.U.
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2024, 589, 171559

 

 

Jinzhong Wang | Experimental methods | Outstanding Scientist Award

Prof. Dr. Jinzhong Wang | Experimental methods | Outstanding Scientist Award

Harbin Institute of Technology | China

Prof. Jinzhong Wang is a highly esteemed academic and researcher in the field of Optoelectronic Materials and Devices. He currently serves as a Professor and Director at the Department of Optoelectronic Information Science, School of Materials Science and Engineering, Harbin Institute of Technology, China. With over 160 academic publications and substantial experience in leading cutting-edge research, Prof. Wang has become a recognized figure in his field, contributing significantly to advancements in optoelectronic materials and their applications.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Prof. Wang’s academic journey began at Jilin University, where he earned his Bachelor’s degree (B.D.) and Master’s degree (M.D.) in Electronic Science. His passion for materials science led him to pursue a Ph.D. at the School of Electronic Science and Engineering at Jilin University, completing his doctoral studies from 1999 to 2002. His early academic endeavors laid the groundwork for his future contributions to optoelectronics, particularly in the areas of materials characterization and device engineering.

Professional Endeavors 💼

Prof. Wang’s career spans several prestigious positions and countries. He began his career as a Researcher at the Laboratoire de Physique des Solids et de Cristallogenèse, CNRS-Meudon, France, in 2003. Following this, he worked as a Post-doctoral Fellow at the Physics Department, Aveiro University (Portugal) and the CENIMAT, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (Portugal) between 2003 and 2009. In 2009, Prof. Wang was appointed as a Professor in the Department of Optoelectronic Information Science, Harbin Institute of Technology, where he has served as Director since 2010.

Contributions and Research Focus 🔬

Prof. Wang’s research focus is centered on Optoelectronic Materials and Devices, particularly in areas that advance the optical properties of materials for use in electronic devices. His research has been supported by various national and international programs, such as the National Key R&D Program, the National 863 Program, and the National Science and Technology Program. Prof. Wang’s studies have contributed to numerous groundbreaking discoveries in optoelectronics, helping to shape future innovations in the field.

Academic Cites 📚

With more than 160 academic papers published, Prof. Wang’s research has garnered considerable recognition. His works have been widely cited in scientific journals, contributing to advancing knowledge in the areas of materials science and optoelectronics. His scholarly publications continue to have a lasting impact, influencing research directions and innovations in the field of materials science.

Research Skills 🛠️

Prof. Wang possesses expertise in several core areas of optoelectronic materials and devices. His research involves advanced techniques in the synthesis, processing, and characterization of materials used in electronic and optical devices. He is well-versed in nanotechnology, semiconductor materials, and photonics, which enables him to tackle complex problems in the development of next-generation optoelectronic devices.

Teaching Experience 🎓

Prof. Wang is also a dedicated educator, teaching materials science and optoelectronics to graduate and postgraduate students at the Harbin Institute of Technology. His mentorship has shaped the careers of many researchers, and his leadership in the department has established it as a premier institution for materials science education.

Awards and Honors 🏆

Prof. Wang’s excellence has been recognized throughout his career. In 2010, he received the prestigious New Century Outstanding Talent title from the Chinese Ministry of Education. This honor is a testament to his outstanding contributions to scientific research and his role as a leader in the field of optoelectronics. He has also received numerous other accolades and awards in recognition of his innovative work and commitment to advancing the field.

Legacy and Future Contributions 🌟

Prof. Wang’s legacy is built on his profound contributions to optoelectronics and his continued commitment to advancing the field of materials science. Looking ahead, he is expected to make even greater strides in his research, focusing on cutting-edge developments in next-generation optoelectronic devices. As a mentor and leader, Prof. Wang will undoubtedly continue to inspire and shape future researchers and scientists, ensuring that his impact is felt for years to come.

Publications Top Notes

Nanoengineering construction of g-C3N4/Bi2WO6 S-scheme heterojunctions for cooperative enhanced photocatalytic CO2 reduction and pollutant degradation

  • Authors: Zhang, B., Liu, Y., Wang, D., Zhao, L., Wang, J.
    Journal: Separation and Purification Technology
    Year: 2025

Large-scale free-standing Bi2Te3/Si heterostructures developed by a modified solvothermal method for a self-powered and efficient imaging photodetector

  • Authors: Yang, S., Jiao, S., Nie, Y., Wang, J., Liang, H.
    Journal: Journal of Alloys and Compounds
    Year: 2025

Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution

  • Authors: Zhang, B., Wang, D., Cao, J., Zhao, L., Wang, J.
    Journal: Chinese Chemical Letters
    Year: 2024

Facile Synthesis of Organic–Inorganic Hybrid Heterojunctions of Glycolated Conjugated Polymer-TiO2−X for Efficient Photocatalytic Hydrogen Evolution

  • Authors: Zhang, B., Genene, Z., Wang, J., Zhu, J., Wang, E.
    Journal: Small
    Year: 2024

Vertical Barrier Heterostructures for Reliable and High-Performance Self-Powered Infrared Detection

  • Authors: Xia, F., Wang, D., Cao, J., Zhao, L., Wang, J.
    Journal: ACS Applied Materials and Interfaces
    Year: 2024

 

 

A. M S Arulanantham | Experimental methods | Best Researcher Award

Dr. A. M. S. Arulanantham | Experimental methods | Best Researcher Award

Dhanalakshmi srinivasan College of Engineering and Technology | India

Dr. A. Maria Susai Arulanantham, an accomplished physicist and researcher, holds a Ph.D. in Physics from Arul Anandar College, Madurai Kamaraj University, India. His extensive research focuses on semiconducting tin sulfide thin films for solar cell applications, showcasing his commitment to advancing clean and green energy technologies. Dr. Arulanantham’s work has consistently contributed to the fields of material science and renewable energy, making his a highly regarded figure in the scientific community.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 📚

Dr. Arulanantham’s academic journey began with a B.Sc. in Physics from St. Xavier’s College, followed by a Master’s in Physics from Arul Anandar College, Madurai Kamaraj University. He further pursued his Ph.D., where he focused on the investigation of tin sulfide thin films for use in solar cells and photosensing applications. These early academic pursuits laid a strong foundation for his successful career as a researcher.

Professional Endeavors 💼

Dr. Arulanantham has garnered significant professional experience throughout his career. He worked as a Junior Research Fellow (JRF) on a DST Major Project (2014-2017), where his research contributed to the development of solar energy technologies. Additionally, his teaching career includes over 4 years of service as an Assistant Professor in the Department of Physics at St. Joseph’s College of Arts and Science, Vaikalipatti, where he nurtured the next generation of physicists.

Contributions and Research Focus 🔬

Dr. Arulanantham’s research focuses primarily on tin sulfide materials (SnS, SnS2, Sn2S3, and Sn3S4) for solar cells and photosensing applications. He has worked extensively on thin film fabrication and characterization, contributing to the development of solar cells and gas-sensing devices. His work emphasizes sustainability, with an overarching goal of improving energy efficiency and advancing green energy technologies for a cleaner future.

Research Skills 🔧

Dr. Arulanantham is highly skilled in material synthesis techniques, including Chemical Bath Deposition (CBD), Spin Coating, and Chemical Spray Pyrolysis (CSP). He also has hands-on expertise in advanced characterization techniques such as X-ray Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM), and UV-Vis Spectroscopy. These techniques are essential for producing high-quality thin films for solar cell applications and gas sensors.

Technical Skills 💻

Dr. Arulanantham is proficient in C, C++ programming, MS Office, and instrument design. He also has experience with Arduino and X-Y stepper programs, skills that are essential for his research and instrumentation development. His technical skills complement his research, enabling his to develop custom solutions for material synthesis and data analysis.

Teaching Experience 👩‍🏫

In addition to his research work, Dr. Arulanantham has an extensive teaching experience of over 4 years, having served as an Assistant Professor in the Department of Physics at St. Joseph’s College of Arts and Science. He has actively engaged in student mentorship, encouraging curiosity and fostering a passion for physics and material science. His academic guidance has influenced countless students in pursuing careers in science and research.

Awards and Honors 🏆

Dr. Arulanantham’s contributions to research and academia have been recognized through numerous awards and honors, including:

  • Best Poster Presentation at Muslim Arts College, Thiruvithancode (2016)
  • Best Poster Presentation at Madurai Kamaraj University (2017)
  • Best Poster Presentation at Mother Theresa Women’s University, Kodaikanal (2018)
  • Junior Research Fellowship (JRF) from DST, India (2014-2017)

These accolades underscore his commitment to excellence in both research and education.

Citations📚

A total of 571 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations    571
  • h-index         16
  • i10-index      23

Publications Top Notes

 

 

Celal Kursun | Experimental methods | Best Researcher Award

Assoc Prof Dr. Celal Kursun | Experimental methods | Best Researcher Award

Head of Materials Science and Engineering at Kahramanmaras Sutcu Imam University, Turkey

Dr. Celal Kurşun is an Associate Professor at Kahramanmaraş Sütçü İmam University, specializing in Materials Science and Engineering. He completed his postdoctoral research at the University of Wisconsin-Madison and has a strong background in the synthesis and characterization of advanced materials, including magnesium-based alloys and metallic glasses. Dr. Kurşun has held various academic positions, including Assistant Professor and Research Specialist, and has supervised numerous graduate theses.

🎓Profile

Early Academic Pursuits 📚

Dr. Celal Kurşun’s academic journey is a testament to his dedication to materials science and engineering, with a particular focus on advanced alloys, structural properties, and energy applications. His academic path began with a Bachelor’s degree in 2009, followed by a Master’s degree in 2012, where he investigated the structural and thermal properties of copper-based alloys. These early pursuits laid the foundation for his more extensive doctoral research, where he completed not one but two PhD theses. The first, completed in 2015, focused on the structural, thermal, and mechanical properties of Cu-based nanocrystalline alloys, while the second (2018) shifted focus to magnesium-based amorphous and nanocrystalline alloys, particularly their mechanical and hydrogen storage capacities. This early academic pursuit of diverse materials’ properties set the stage for his later contributions to high-impact research areas such as energy storage, radiation shielding, and alloy design.

Professional Endeavors & Postdoctoral Research 🔬

Dr. Kurşun’s professional career is distinguished by both teaching and high-level research. After earning his PhD, he undertook a postdoctoral position at the prestigious University of Wisconsin-Madison (2018-2020) within the Materials Science and Engineering Department. Here, his research concentrated on the design, synthesis, and characterization of advanced magnesium-based bulk metallic glass alloys for hydrogen storage and energy applications. This period not only sharpened his research skills but also allowed him to engage in cutting-edge projects with significant implications for sustainable energy technologies. His postdoctoral work solidified his reputation as a leading figure in the study of energy-efficient materials.

Contributions and Research Focus ⚙️

Dr. Kurşun’s research focuses on advanced materials, particularly nanostructured and metallic glass alloys. His work addresses critical challenges in energy storage, with a focus on hydrogen storage in magnesium-based alloys, which holds promise for clean energy applications. Additionally, his research on radiation shielding materials, such as boron-doped titanium alloys and Al-Gd2O3 composites, contributes to industries requiring advanced protective materials against neutron and gamma radiation, such as nuclear energy and space exploration.

Impact and Influence 🌍

Dr. Kurşun’s research has not only advanced academic knowledge but has also had significant real-world applications. His groundbreaking work on magnesium-based alloys for hydrogen storage and his innovative approaches to improving radiation shielding materials have placed him at the forefront of energy and environmental research. Furthermore, his academic leadership has had a broad impact through the mentorship of numerous graduate students, many of whom have gone on to pursue successful careers in materials science and engineering. His recognition within international scientific organizations such as the American Physical Society and The Minerals, Metals & Materials Society underscores his influence on the global materials science community.

Academic Citations 📑

Dr. Kurşun’s work has been consistently recognized and cited in leading international journals, including Journal of Materials Science: Materials in Electronics, Ceramics International, and HELIYON. His research on the structural and mechanical properties of alloys, radiation shielding, and catalytic processes is frequently cited by researchers working in similar domains, contributing to the development of novel materials and technologies. His citation record reflects the impact his work has had on advancing knowledge and innovation in materials science, energy storage, and environmental sustainability.

Technical Skills 🛠️

Dr. Kurşun possesses an extensive skill set, combining advanced experimental techniques with theoretical modeling. His technical expertise includes the design, synthesis, and characterization of amorphous and nanocrystalline alloys, as well as mechanical testing, neutron and gamma radiation shielding, and the study of thermal properties of materials. His familiarity with techniques such as arc melting, mechanical alloying, and the use of various characterization tools (e.g., X-ray diffraction, scanning electron microscopy) allows him to address complex challenges in materials science.

Teaching Experience 🍎

Throughout his career, Dr. Kurşun has demonstrated a strong commitment to teaching and mentoring students. As an Associate Professor, he has designed and taught various courses in materials science, solid-state physics, and engineering, preparing the next generation of scientists and engineers. His approach to teaching emphasizes not only the theoretical foundations of materials science but also practical, hands-on experiences that prepare students for real-world challenges. In addition to his classroom duties, Dr. Kurşun has supervised a number of graduate and undergraduate theses, helping students pursue their research interests and develop critical thinking and analytical skills.

Legacy and Future Contributions 🔮

Dr. Kurşun’s legacy is already being shaped by his continued research and mentorship, with his influence extending to both the scientific community and the educational sector. Looking ahead, Dr. Kurşun aims to deepen his work on sustainable materials for energy applications, particularly in developing alloys that can address the global demand for clean energy solutions. His research trajectory also hints at greater interdisciplinary work, exploring areas where materials science meets environmental sustainability, energy storage, and the circular economy.

Publication Top Notes📖

Structure, mechanical, and neutron radiation shielding characteristics of mechanically milled nanostructured (100-x)Al-xGd2O3 metal composites
  • Authors: Celal Kursun, Meng Gao, Ali Orkun Yalcin, Khursheed A. Parrey, Yasin Gaylan
    Journal: Ceramics International
    Year: 2024
Unraveling structural relaxation induced ductile-to-brittle transition from perspective of shear band nucleation kinetics in metallic glass
  • Authors: Meng Gao, Celal Kursun, John H. Perepezko
    Journal: Journal of Alloys and Compounds
    Year: 2023
Synthesis and mechanical properties of (Ni70Si30)100−x Fe x (x = 0, 5, 10) alloys
  • Authors: Celal Kursun, Ahmet Muslim Aksoy
    Journal: Emerging Materials Research
    Year: 2019
Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15−xSix (X = 1, 2, 3) alloys by mechanical alloying
  • Authors: Celal Kursun, Musa Gogebakan, Hasan Eskalen
    Journal: Materials Research Express
    Year: 2018
The Effect of Milling Time on the Synthesis of Cu54Mg22Ti18Ni6 Alloy
  • Authors: Celal Kursun, Musa Gogebakan
    Journal: 9th International Physics Conference of the Balkan Physical Union (Bpu-9)
    Year: 2016

 

 

Adilson Matias | Interactions and fields | Best Researcher Award

Mr. Adilson Matias | Interactions and fields | Best Researcher Award

Plant Maintenance Engineer at Somiluana-Mining, S.A, Angola

Adilson João Matias is an Angolan Mechanical Engineer born on August 24, 1988, currently residing in Luanda-Cacuaco. With a robust background in plant maintenance engineering, he specializes in managing and maintaining both fixed and rotating equipment. Adilson is known for his strong problem-solving skills and attention to detail, which he applies in overseeing daily operations and small project management in mining. His professional journey is complemented by a commitment to sustainable energy, highlighted by his ongoing Master’s studies in Energy Engineering. Adilson’s extensive training in various technical courses, combined with his ability to collaborate effectively in team settings, positions him as a valuable asset in the engineering sector.

🎓Profile

🌱 Early Academic Pursuits

Adilson João Matias embarked on his academic journey in Mechanical Engineering at Agostinho Neto University in Luanda, Angola, where he earned his Bachelor’s degree in December 2016. His commitment to education continued as he pursued a Master’s degree in Energy Engineering at the Federal University of Itajubá, Brazil, focusing on sustainable practices in bioenergy.

🛠️ Professional Endeavors

With over two years of experience as a Plant Maintenance Engineer at Somiluana-Mining, S.A., Adilson has demonstrated expertise in managing and maintaining critical fixed and rotating equipment. His role encompasses overseeing daily operations, managing small projects, and ensuring efficient plant assembly. Previously, he gained valuable experience as a Project Engineer Trainee at Petromar, contributing to significant offshore construction projects.

📚 Contributions and Research Focus

Adilson’s research centers on the potential for sustainable sugarcane production for bioenergy in Angola. His publication, titled An Evaluation of the Land Available for Sustainable Sugarcane Cultivation and Potential for Producing Ethanol and Bioelectricity in Angola, reflects his commitment to promoting sustainable energy solutions.

🌍 Impact and Influence

Through his engineering and research efforts, Adilson aims to influence the development of sustainable energy practices in Angola. His work in maintenance engineering ensures operational efficiency and safety within the mining sector, significantly impacting productivity and environmental conservation.

📄 Academic Cites

Adilson’s work has been recognized in academic circles, particularly through his publication that discusses land availability for sustainable cultivation. This contribution provides valuable insights for policymakers and industry stakeholders in the energy sector.

🔧 Technical Skills

Adilson possesses a robust set of technical skills, including:

  • Proficiency in SAP Plant Maintenance and Microsoft Excel.
  • Expertise in reading engineering drawings and Piping Isometric Drawings.
  • Experience in non-destructive testing and industrial pipe inspection.
  • Knowledge of hydraulic circuits and maintenance of pumps, valves, and gearboxes.

🎓 Teaching Experience

While specific teaching roles are not detailed, Adilson’s participation in various training programs and workshops indicates a capacity for knowledge sharing and mentorship within his field.

🌟 Legacy and Future Contributions

Adilson aims to leave a lasting legacy by contributing to the energy sector in Angola through sustainable practices and innovative engineering solutions. His future endeavors may include further research in renewable energy technologies and expanding his role in project management within the engineering landscape.

📖Publication Top Notes

An Evaluation of the Land Available for Sustainable Sugarcane Cultivation and Potential for Producing Ethanol and Bioelectricity in Angola
  • Authors: Adilson João Matias, Luiz Augusto Horta Nogueira, Eric Alberto Ocampo Batlle

           Publication Year: 2024

Assessment of the Potential for Sustainable Sugarcane Production for Bioenergy in Angola
  • Authors: Adilson João Matias, Luiz Augusto Horta Nogueira, Eric Alberto Ocampo Batlle

           Publication Year: 2024

 

 

Tanmay CHATTOPADHYAY | Experimental methods | Best Researcher Award

Assoc Prof Dr. Tanmay CHATTOPADHYAY | Experimental methods | Best Researcher Award

Associate Professor at Diamond Harbour Women’s University, India

Dr. Tanmay Chattopadhyay is an Associate Professor in the Department of Chemistry at Diamond Harbour Women’s University, West Bengal, India. With over 14 years of teaching and research experience, he has made significant contributions to the fields of bio-inorganic chemistry, coordination chemistry, and nanomaterials. Dr. Chattopadhyay has held various academic positions, including his current role at DHWU and previously at Panchakot Mahavidyalaya. His research expertise has led to multiple patents, and his work has been published extensively in renowned scientific journals. He is an active member of several professional organizations, including the Indian Chemical Society and IACS.

Profile:

Education:

Dr. Chattopadhyay has a robust academic background in chemistry, with a focus on inorganic and coordination chemistry. He completed his Ph.D. in 2008 at the University of Calcutta under the guidance of Professor Debasis Das, where he explored advanced bio-inorganic and coordination chemistry. His academic journey began with a Bachelor of Science from the University of Burdwan in 2001, followed by a Master of Science from Visva-Bharati University in 2003, where he specialized in inorganic chemistry. Dr. Chattopadhyay further enhanced his academic credentials with a postdoctoral fellowship at the National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba, Japan, under the supervision of Professor Masumi Asakawa. During his postdoctoral research, he developed innovative nanomaterials and catalytic systems, setting the foundation for his future research interests.

Professional experience:

Dr. Chattopadhyay’s professional journey in academia began in 2010 when he joined Panchakot Mahavidyalaya as an Assistant Professor in Chemistry. He held this position until 2019, where he played a crucial role in developing the chemistry curriculum and mentoring undergraduate students. In 2019, he transitioned to Diamond Harbour Women’s University as an Assistant Professor, quickly establishing himself as a key faculty member. His academic leadership was further recognized when he was promoted to Associate Professor in June 2022. Dr. Chattopadhyay’s research experience also includes a postdoctoral fellowship at AIST, Japan, where he worked on cutting-edge nanomaterials and coordination chemistry. His extensive teaching experience, coupled with his contributions to research, makes him a respected figure in the academic community.

Research focus:

Dr. Chattopadhyay’s research primarily focuses on bio-inorganic chemistry, coordination chemistry, and nanomaterials. His work has involved the development of novel catalytic systems using transition metal complexes and nanostructured materials for organic transformations. He has a particular interest in magnetically recoverable nanocatalysts and their applications in sustainable chemical processes, such as alcohol oxidation and nitrophenol reduction. Dr. Chattopadhyay’s research also delves into metalloenzyme mimics, exploring the catalytic potential of Zn(II) and Ni(II) complexes. His research output includes 64 publications in refereed journals, with collaborations both in India and internationally. His dedication to advancing the understanding of catalysis and materials science has established him as a leader in his field.

Awards and Honors:

Dr. Chattopadhyay has received several accolades for his contributions to chemistry. He was awarded a prestigious WB-DST research grant in 2018, worth INR 4 lakh, for his ongoing research. Earlier, he received the SERB-DST Early Career Research grant in 2014, a notable award of INR 24.18 lakh, recognizing his potential as a researcher. Additionally, he secured a UGC research grant of INR 4.95 lakh in 2014, further supporting his work in coordination chemistry and nanomaterials. Dr. Chattopadhyay has also been granted a Japanese patent for his innovative contributions to catalysis. As a member of esteemed professional societies such as the Indian Chemical Society and IACS, his work continues to receive recognition both nationally and internationally.

Publication Top Notes:

  1. Title: Synthesis of copper(ii) complex-functionalized Fe3O4@ISNA (ISNA = isonicotinic acid) as a magnetically recoverable nanomaterial: catalytic studies in alcohol oxidation and nitrophenol reduction, and TD-DFT studies
    Authors: Mondal, R., Chakraborty, A., Zangrando, E., Shukla, M., Chattopadhyay, T.
    Year: 2024
    Citations: 0 📖
  2. Title: Comparative analysis of Zn(ii)-complexes as model metalloenzymes for mimicking Jack bean urease
    Authors: Ghanta, R., Chowdhury, T., Ghosh, A., Das, A.K., Chattopadhyay, T.
    Year: 2024
    Citations: 2 📖📖
  3. Title: Ni(II)-Complex Anchored Over Functionalized Mesoporous SBA-15: A Nanocatalyst for the Synthesis of Aminophenoxazinone Derivatives
    Authors: Ghanta, R., Mondal, R., Chowdhury, T., Chattopadhyay, T., Bhaumik, A.
    Year: 2024
    Citations: 0 📖
  4. Title: Experimental and theoretical investigation of the catalytic performance of reduced Schiff base and Schiff base iron complexes: Transformation to magnetically retrievable catalyst
    Authors: Mondal, R., Chakraborty, A., Ghanta, R., Menéndez, M.I., Chattopadhyay, T.
    Year: 2021
    Citations: 11 📖📖📖📖📖📖📖📖📖📖📖
  5. Title: Iron Complexes Anchored onto Magnetically Separable Graphene Oxide Sheets: An Excellent Catalyst for the Synthesis of Dihydroquinazoline-Based Compounds
    Authors: Chakraborty, A., Chowdhury, T., Menendez, M.I., Chattopadhyay, T.
    Year: 2020
    Citations: 15 📖📖📖📖📖📖📖📖📖📖📖📖📖📖📖
  6. Title: Triton X-100 functionalized Cu(II) dihydrazone based complex immobilized on Fe3O4@dopa: A highly efficient catalyst for oxidation of alcohols, alkanes, and sulfides and epoxidation of alkenes
    Authors: Chakraborty, T., Mondal, R., Ghanta, R., Chakraborty, A., Chattopadhyay, T.
    Year: 2020
    Citations: 5 📖📖📖📖📖
  7. Title: Experimentally formulated and theoretically rationalized alumina immobilized copper catalyst for alcohol oxidation
    Authors: Chowdhury, T., Chatterjee, S., Banerjee, P., Shukla, M., Chattopadhyay, T.
    Year: 2020
    Citations: 3 📖📖📖
  8. Title: Pd(0) immobilized on Fe3O4@AHBA: an efficient magnetically separable heterogeneous nanocatalyst for C–C coupling reactions
    Authors: Chakraborty, T., Sarkar, A., Chattopadhyay, T.
    Year: 2019
    Citations: 8 📖📖📖📖📖📖📖📖
  9. Title: Surfactant-mediated solubilization of magnetically separable nanocatalysts for the oxidation of alcohols
    Authors: Chakraborty, A., Chakraborty, T., Menendez, M.I., Chattopadhyay, T.
    Year: 2019
    Citations: 14 📖📖📖📖📖📖📖📖📖📖📖📖📖📖
  10. Title: Designing of a magnetically separable Fe3O4@dopa@ML nano-catalyst for multiple organic transformations (epoxidation, reduction, and coupling) in aqueous medium
    Authors: Dasgupta, S., Chatterjee, S., Chattopadhyay, T.
    Year: 2019
    Citations: 8 📖📖📖📖📖📖📖📖