Şükrü KARATAŞ | Experimental methods | Excellence in Research

Prof. Şükrü KARATAŞ | Experimental methods | Excellence in Research

Kahramanmaraş Sütçü İmam University | Turkey

Prof. Şükrü Karataş is a renowned professor in the Department of Physics at Kahramanmaraş Sütçü İmam University (KSÜ). With nearly 100 scientific publications and over 3,200 citations, Prof. Karataş has become a leading figure in the field of semiconductor devices and solar cell technology. His research primarily focuses on the preparation and electrical and dielectric properties of Schottky diodes, MS, MIS, MOS structures, and solar cells, making significant contributions to material science and energy technology.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Prof. Karataş’s academic journey began at Dicle University in Diyarbakır, Turkey, where he earned his B.S. in Physics in 1992. Driven by a passion for understanding the fundamental aspects of physics, he pursued advanced studies at Kahramanmaraş Sütçü İmam University and Gazi University, obtaining his M.S. (1996) and Ph.D. (2003) degrees, respectively. His deep interest in semiconductors and material sciences has been a defining feature of his academic career.

Professional Endeavors 💼

Prof. Karataş has been an integral part of the KSÜ Faculty of Science, starting as a Research Assistant and progressing to a full Professor. He has been involved in numerous research projects, both completed and ongoing, taking on executive roles and contributing to various fields of semiconductor physics and solar energy. His expertise has been sought by national and international symposia, where he has been invited as a speaker, showcasing his influence in the scientific community.

Contributions and Research Focus 🔬

Prof. Karataş is widely recognized for his contributions to semiconductor devices such as Schottky diodes, MS, MIS, and MOS structures, with a focus on their electrical and dielectric properties in relation to temperature, frequency, and radiation. His pioneering work in solar cells has garnered significant attention for its practical applications in renewable energy. The depth of his research in the preparation, analysis, and optimization of these devices is central to his academic identity.

Academic Cites 📑

Prof. Karataş has established himself as a highly respected researcher, amassing over 3,200 citations across nearly 100 published articles. His cited work speaks to the relevance and impact of his research, particularly in semiconductor devices and solar energy systems. His papers are often referenced in studies concerning the electrical and dielectric properties of materials used in high-tech applications, ensuring his influence reaches across a wide range of scientific disciplines.

Research Skills 🔧

Prof. Karataş possesses a diverse skill set, including expertise in the preparation and analysis of semiconductor materials and solar cells. His ability to explore the electrical properties of Schottky diodes and MOS structures under varying conditions such as temperature, frequency, and radiation has contributed significantly to the advancement of semiconductor technology. Additionally, his leadership in executing projects has showcased his ability to collaborate and manage large, complex research efforts.

Teaching Experience 👨‍🏫

Prof. Karataş is a passionate educator who has taught a wide range of advanced courses at the master’s and doctoral levels. His teaching spans subjects related to semiconductors, material science, and solar energy, and he has mentored many graduate students in these fields. His dedication to academic excellence is evident not only through his lectures but also through his role as a graduate advisor, guiding students in their research pursuits and helping shape the next generation of scientists.

🌟 Legacy and Future Contributions

Prof. Karataş’s legacy lies in his pioneering research, impactful publications, and the success of his students. Looking ahead, he aims to expand his work in renewable energy technologies and foster global collaborations to further advance the field of semiconductor physics. His vision ensures that his contributions will continue to influence the scientific community for years to come.

Publications Top Notes

 

 

A. M S Arulanantham | Experimental methods | Best Researcher Award

Dr. A. M. S. Arulanantham | Experimental methods | Best Researcher Award

Dhanalakshmi srinivasan College of Engineering and Technology | India

Dr. A. Maria Susai Arulanantham, an accomplished physicist and researcher, holds a Ph.D. in Physics from Arul Anandar College, Madurai Kamaraj University, India. His extensive research focuses on semiconducting tin sulfide thin films for solar cell applications, showcasing his commitment to advancing clean and green energy technologies. Dr. Arulanantham’s work has consistently contributed to the fields of material science and renewable energy, making his a highly regarded figure in the scientific community.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 📚

Dr. Arulanantham’s academic journey began with a B.Sc. in Physics from St. Xavier’s College, followed by a Master’s in Physics from Arul Anandar College, Madurai Kamaraj University. He further pursued his Ph.D., where he focused on the investigation of tin sulfide thin films for use in solar cells and photosensing applications. These early academic pursuits laid a strong foundation for his successful career as a researcher.

Professional Endeavors 💼

Dr. Arulanantham has garnered significant professional experience throughout his career. He worked as a Junior Research Fellow (JRF) on a DST Major Project (2014-2017), where his research contributed to the development of solar energy technologies. Additionally, his teaching career includes over 4 years of service as an Assistant Professor in the Department of Physics at St. Joseph’s College of Arts and Science, Vaikalipatti, where he nurtured the next generation of physicists.

Contributions and Research Focus 🔬

Dr. Arulanantham’s research focuses primarily on tin sulfide materials (SnS, SnS2, Sn2S3, and Sn3S4) for solar cells and photosensing applications. He has worked extensively on thin film fabrication and characterization, contributing to the development of solar cells and gas-sensing devices. His work emphasizes sustainability, with an overarching goal of improving energy efficiency and advancing green energy technologies for a cleaner future.

Research Skills 🔧

Dr. Arulanantham is highly skilled in material synthesis techniques, including Chemical Bath Deposition (CBD), Spin Coating, and Chemical Spray Pyrolysis (CSP). He also has hands-on expertise in advanced characterization techniques such as X-ray Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM), and UV-Vis Spectroscopy. These techniques are essential for producing high-quality thin films for solar cell applications and gas sensors.

Technical Skills 💻

Dr. Arulanantham is proficient in C, C++ programming, MS Office, and instrument design. He also has experience with Arduino and X-Y stepper programs, skills that are essential for his research and instrumentation development. His technical skills complement his research, enabling his to develop custom solutions for material synthesis and data analysis.

Teaching Experience 👩‍🏫

In addition to his research work, Dr. Arulanantham has an extensive teaching experience of over 4 years, having served as an Assistant Professor in the Department of Physics at St. Joseph’s College of Arts and Science. He has actively engaged in student mentorship, encouraging curiosity and fostering a passion for physics and material science. His academic guidance has influenced countless students in pursuing careers in science and research.

Awards and Honors 🏆

Dr. Arulanantham’s contributions to research and academia have been recognized through numerous awards and honors, including:

  • Best Poster Presentation at Muslim Arts College, Thiruvithancode (2016)
  • Best Poster Presentation at Madurai Kamaraj University (2017)
  • Best Poster Presentation at Mother Theresa Women’s University, Kodaikanal (2018)
  • Junior Research Fellowship (JRF) from DST, India (2014-2017)

These accolades underscore his commitment to excellence in both research and education.

Citations📚

A total of 571 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations    571
  • h-index         16
  • i10-index      23

Publications Top Notes

 

 

Tanmay CHATTOPADHYAY | Experimental methods | Best Researcher Award

Assoc Prof Dr. Tanmay CHATTOPADHYAY | Experimental methods | Best Researcher Award

Associate Professor at Diamond Harbour Women’s University, India

Dr. Tanmay Chattopadhyay is an Associate Professor in the Department of Chemistry at Diamond Harbour Women’s University, West Bengal, India. With over 14 years of teaching and research experience, he has made significant contributions to the fields of bio-inorganic chemistry, coordination chemistry, and nanomaterials. Dr. Chattopadhyay has held various academic positions, including his current role at DHWU and previously at Panchakot Mahavidyalaya. His research expertise has led to multiple patents, and his work has been published extensively in renowned scientific journals. He is an active member of several professional organizations, including the Indian Chemical Society and IACS.

Profile:

Education:

Dr. Chattopadhyay has a robust academic background in chemistry, with a focus on inorganic and coordination chemistry. He completed his Ph.D. in 2008 at the University of Calcutta under the guidance of Professor Debasis Das, where he explored advanced bio-inorganic and coordination chemistry. His academic journey began with a Bachelor of Science from the University of Burdwan in 2001, followed by a Master of Science from Visva-Bharati University in 2003, where he specialized in inorganic chemistry. Dr. Chattopadhyay further enhanced his academic credentials with a postdoctoral fellowship at the National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba, Japan, under the supervision of Professor Masumi Asakawa. During his postdoctoral research, he developed innovative nanomaterials and catalytic systems, setting the foundation for his future research interests.

Professional experience:

Dr. Chattopadhyay’s professional journey in academia began in 2010 when he joined Panchakot Mahavidyalaya as an Assistant Professor in Chemistry. He held this position until 2019, where he played a crucial role in developing the chemistry curriculum and mentoring undergraduate students. In 2019, he transitioned to Diamond Harbour Women’s University as an Assistant Professor, quickly establishing himself as a key faculty member. His academic leadership was further recognized when he was promoted to Associate Professor in June 2022. Dr. Chattopadhyay’s research experience also includes a postdoctoral fellowship at AIST, Japan, where he worked on cutting-edge nanomaterials and coordination chemistry. His extensive teaching experience, coupled with his contributions to research, makes him a respected figure in the academic community.

Research focus:

Dr. Chattopadhyay’s research primarily focuses on bio-inorganic chemistry, coordination chemistry, and nanomaterials. His work has involved the development of novel catalytic systems using transition metal complexes and nanostructured materials for organic transformations. He has a particular interest in magnetically recoverable nanocatalysts and their applications in sustainable chemical processes, such as alcohol oxidation and nitrophenol reduction. Dr. Chattopadhyay’s research also delves into metalloenzyme mimics, exploring the catalytic potential of Zn(II) and Ni(II) complexes. His research output includes 64 publications in refereed journals, with collaborations both in India and internationally. His dedication to advancing the understanding of catalysis and materials science has established him as a leader in his field.

Awards and Honors:

Dr. Chattopadhyay has received several accolades for his contributions to chemistry. He was awarded a prestigious WB-DST research grant in 2018, worth INR 4 lakh, for his ongoing research. Earlier, he received the SERB-DST Early Career Research grant in 2014, a notable award of INR 24.18 lakh, recognizing his potential as a researcher. Additionally, he secured a UGC research grant of INR 4.95 lakh in 2014, further supporting his work in coordination chemistry and nanomaterials. Dr. Chattopadhyay has also been granted a Japanese patent for his innovative contributions to catalysis. As a member of esteemed professional societies such as the Indian Chemical Society and IACS, his work continues to receive recognition both nationally and internationally.

Publication Top Notes:

  1. Title: Synthesis of copper(ii) complex-functionalized Fe3O4@ISNA (ISNA = isonicotinic acid) as a magnetically recoverable nanomaterial: catalytic studies in alcohol oxidation and nitrophenol reduction, and TD-DFT studies
    Authors: Mondal, R., Chakraborty, A., Zangrando, E., Shukla, M., Chattopadhyay, T.
    Year: 2024
    Citations: 0 📖
  2. Title: Comparative analysis of Zn(ii)-complexes as model metalloenzymes for mimicking Jack bean urease
    Authors: Ghanta, R., Chowdhury, T., Ghosh, A., Das, A.K., Chattopadhyay, T.
    Year: 2024
    Citations: 2 📖📖
  3. Title: Ni(II)-Complex Anchored Over Functionalized Mesoporous SBA-15: A Nanocatalyst for the Synthesis of Aminophenoxazinone Derivatives
    Authors: Ghanta, R., Mondal, R., Chowdhury, T., Chattopadhyay, T., Bhaumik, A.
    Year: 2024
    Citations: 0 📖
  4. Title: Experimental and theoretical investigation of the catalytic performance of reduced Schiff base and Schiff base iron complexes: Transformation to magnetically retrievable catalyst
    Authors: Mondal, R., Chakraborty, A., Ghanta, R., Menéndez, M.I., Chattopadhyay, T.
    Year: 2021
    Citations: 11 📖📖📖📖📖📖📖📖📖📖📖
  5. Title: Iron Complexes Anchored onto Magnetically Separable Graphene Oxide Sheets: An Excellent Catalyst for the Synthesis of Dihydroquinazoline-Based Compounds
    Authors: Chakraborty, A., Chowdhury, T., Menendez, M.I., Chattopadhyay, T.
    Year: 2020
    Citations: 15 📖📖📖📖📖📖📖📖📖📖📖📖📖📖📖
  6. Title: Triton X-100 functionalized Cu(II) dihydrazone based complex immobilized on Fe3O4@dopa: A highly efficient catalyst for oxidation of alcohols, alkanes, and sulfides and epoxidation of alkenes
    Authors: Chakraborty, T., Mondal, R., Ghanta, R., Chakraborty, A., Chattopadhyay, T.
    Year: 2020
    Citations: 5 📖📖📖📖📖
  7. Title: Experimentally formulated and theoretically rationalized alumina immobilized copper catalyst for alcohol oxidation
    Authors: Chowdhury, T., Chatterjee, S., Banerjee, P., Shukla, M., Chattopadhyay, T.
    Year: 2020
    Citations: 3 📖📖📖
  8. Title: Pd(0) immobilized on Fe3O4@AHBA: an efficient magnetically separable heterogeneous nanocatalyst for C–C coupling reactions
    Authors: Chakraborty, T., Sarkar, A., Chattopadhyay, T.
    Year: 2019
    Citations: 8 📖📖📖📖📖📖📖📖
  9. Title: Surfactant-mediated solubilization of magnetically separable nanocatalysts for the oxidation of alcohols
    Authors: Chakraborty, A., Chakraborty, T., Menendez, M.I., Chattopadhyay, T.
    Year: 2019
    Citations: 14 📖📖📖📖📖📖📖📖📖📖📖📖📖📖
  10. Title: Designing of a magnetically separable Fe3O4@dopa@ML nano-catalyst for multiple organic transformations (epoxidation, reduction, and coupling) in aqueous medium
    Authors: Dasgupta, S., Chatterjee, S., Chattopadhyay, T.
    Year: 2019
    Citations: 8 📖📖📖📖📖📖📖📖