Jagrutiba Gohil | Experimental methods | Best Researcher Award

Ms. Jagrutiba Gohil | Experimental methods | Best Researcher Award

Department of Physics | Sardar Patel University | India

Ms. Jagrutiba Gohil is a dedicated PhD research scholar at Sardar Patel University, focusing on material science, specifically in photodetector materials like tin selenide (SnSe) and Indium Selenide (InSe) crystals. His research, which combines experimental crystal growth techniques and nanomaterials integration, explores self-powered photodetectors for optoelectronic applications. Jagrutiba is also an instructor at RPTP Science School and has made significant strides in both academic research and teaching.

👨‍🎓Profile

Google scholar

Scopus

Orcid

🎓 Early Academic Pursuits

Ms. Jagrutiba’s academic journey began with a Bachelor’s degree in Physics from Sardar Patel University, where he achieved a solid foundation in the subject. His Master’s degree in Physics (M.Sc. and M.Phil.) further deepened his knowledge and set the stage for his doctoral research. With a passion for research, he began his Ph.D. in 2020, focusing on the growth, characterization, and application of semiconductor materials. His educational background reflects a commitment to excellence and continuous learning.

💼 Professional Endeavors

Ms. Jagrutiba’s professional career spans multiple areas, including research, teaching, and academic support. As a PhD scholar, he has contributed immensely to the field of materials science. He also plays a pivotal role in mentoring postgraduate students and supporting their research efforts. In addition to his academic commitments, he serves as a Physics instructor at RPTP Science School, where he fosters student engagement through hands-on learning and real-world physics applications.

🔬 Contributions and Research Focus

Ms. Jagrutiba’s research focus primarily lies in developing self-powered photodetectors, utilizing tin selenide (SnSe) and Indium Selenide (InSe) crystals. His work explores self-biased and self-powered devices, which promise significant advancements in optoelectronics. He has contributed to 8 peer-reviewed publications, exploring crystal growth techniques, material characterization, and the integration of nanomaterials into functional devices. His high-quality research and innovative techniques have significantly impacted the field of materials science.

🌍 Impact and Influence

Through his cutting-edge research, Jagrutiba has had a lasting impact on the field of optoelectronics, specifically in the development of self-powered photodetectors. His work has paved the way for new technologies in optical metrology, nanomaterial integration, and self-biased systems. His collaborative efforts, leadership, and research contributions have enhanced the scientific community’s understanding of semiconductor materials and their applications.

📑 Academic Cites

Ms. Jagrutiba’s work has been widely cited in prestigious journals, contributing to the advancement of photodetection technology. His publications in journals like Optical Materials, Materials Chemistry and Physics, and RSC Advances have garnered attention for their novel methodologies and innovative research. His ability to translate complex scientific concepts into meaningful applications makes his work highly valuable to the academic community.

🛠️ Research Skills

Ms. Jagrutiba has acquired a range of specialized research skills throughout his career. These include:

  • Crystal growth techniques like Direct Vapor Transport (DVT)
  • Advanced material characterization (UV-Visible spectroscopy, Hall effect, resistivity measurements, etc.)
  • Synthesis of nanoparticles, thin films, and 2D materials using techniques like hydrothermal synthesis and electrophoresis
  • Device fabrication including photodetectors, Schottky diodes, and PEC-type solar cells

These skills allow him to develop cutting-edge devices and systems that advance both optoelectronics and materials science.

🏅Awards and Honors 

Ms. Jagrutiba’s efforts have been recognized through the SHODH Fellowship (2021-2023) by the Government of Gujarat, an award that underscores his research excellence and his contributions to materials science.

🌱 Legacy and Future Contributions

Ms. Jagrutiba’s future in research and education looks promising, as he continues to explore innovative material synthesis, device fabrication, and optical metrology techniques. His work aims to significantly impact the optoelectronics industry, with self-powered photodetectors that could revolutionize energy-efficient devices and sustainable technologies. As he progresses in his Ph.D. and teaching career, he hopes to inspire future generations of scientists, contributing to the advancement of material science and optoelectronics.

Publications Top Notes

Self-biased photoelectrochemical photodetector based on liquid phase exfoliated SnSe nanosheets

  • Authors: Jagrutiba D. Gohil, Sanjay A. Bhakhar, Megha Patel, Hiren Shantilal Jagani, V.M. Pathak
    Journal: Optical Materials
    Year: 2024

Self-powered photodetector based on direct vapour transfer (DVT) method grown tin selenide (SnSe) crystals

  • Authors: Jagrutiba Gohil, Vibhutiba Jethwa, Hirenkumar Shantilal Jagani, Ankit G. Dalvaniya, Vivek M. Pathak
    Journal: Journal of Alloys and Compounds
    Year: 2023

Stability & durability of self-driven photo-detective parameters based on Sn₁₋βSbβSe (β = 0, 0.05, 0.10, 0.15, 0.20) ternary alloy single crystals

  • Authors: Jagrutiba Gohil, Hirenkumar Jagani, Vijay Dixit, Abhishek Patel, V.M. Pathak
    Journal: RSC Advances
    Year: 2022

Self-powered anisotropic photo-responsive properties of tin mono-selenide (SnSe) photodetector

  • Authors: Jagrutiba Gohil, Hirenkumar Jagani, Abhishek Patel, V.M. Pathak
    Journal: Optical Materials
    Year: 2022

Enhanced visible-light photoresponse of DVT-grown Ni-doped SnSe crystal

  • Authors: Jagrutiba Gohil, Vibhutiba Jethwa, Vivek M. Pathak, Gunvant K. Solanki, Payal Chauhan, Alkesh B. Patel, Chetan Zankat, Nashreen Patel
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2022

Sonochemical exfoliation, characterization and photoresponse of MoS₀.₅Se₁.₅ nanosheets

  • Authors: Jagrutiba Gohil, Nashreen Patel, Sanjay A. Bhakhar, G.K. Solanki, K.D. Patel, V.M. Pathak, Chetan K. Zankat, Pratik M. Pataniya, Shubham U. Gupta
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2021

 

 

 

 

Jothi Lakshmanan | Experimental methods | Women Researcher Award

Dr. Jothi Lakshmanan | Experimental methods | Women Researcher Award

N.K.R.Government Arts College for Women | India

Dr. L. Jothi is an accomplished Associate Professor of Physics with over 35 years of teaching experience at the UG, PG, and M.Phil. levels. Holding a Ph.D., M.Phil., and D.Litt. degrees, she has shaped and inspired countless students in the field of Material Science, Crystal Physics, Energy Physics, Biophysics, and Nanophysics. Her dedication to both teaching and research has garnered recognition across various national and international platforms.

👨‍🎓Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Jothi completed her education at Bharathidasan University, Tiruchirappalli, where she pursued her B.Sc., M.Sc., M.Phil., and Ph.D. degrees. Her educational journey laid the foundation for a rich career in academic leadership and scientific research. She has remained committed to her academic pursuits throughout her career, driven by a passion for advancing knowledge and creating meaningful learning experiences for her students.

Professional Endeavors 🌟

With a career spanning over three decades, Dr. Jothi has held numerous prestigious administrative positions. She has served as the Principal, Vice Principal, Head of the Department of Physics, and Research Advisor. Dr. Jothi’s leadership roles reflect her management skills, as well as her commitment to academic excellence. She has also served as a Senate Member and in key positions at Periyar University and Madras University, significantly influencing the direction of higher education.

Contributions and Research Focus 🔬

Dr. Jothi’s research interests include Material Science, Crystal Physics, Energy Physics, Biophysics, and Nanophysics. With over 200 papers published across national and international journals and conferences, her research has had a profound impact on these fields. As a mentor, she has guided Ph.D. and M.Phil. students, producing significant scholarly work and research contributions that have shaped the academic landscape.

Impact and Influence 🌍

Dr. Jothi’s influence extends beyond her own academic institution. She has been an active resource speaker at international conferences and workshops, sharing her knowledge on various scientific subjects. As the Naan Mudhalvan Program Coordinator, she has led skill development courses for undergraduate students, ensuring that future generations are well-prepared for the challenges of the modern scientific world.

Research Skills 🧠

Dr. Jothi has demonstrated exceptional research skills, ranging from material characterization to crystal structure analysis. She has a unique ability to integrate advanced scientific techniques in her research, addressing both fundamental and applied aspects of physics. Dr. Jothi’s multidisciplinary approach allows her to explore and develop innovative solutions in nanophysics, biophysics, and energy physics.

Teaching Experience 👩‍🏫

With 35 years of teaching experience, Dr. Jothi has played an instrumental role in educating and mentoring countless students. Her dynamic teaching style integrates theoretical knowledge with practical experience, fostering critical thinking among her students. She has shaped the curricula and teaching methodologies for various programs across Periyar University and other affiliated institutions, ensuring students receive a comprehensive education in physics.

Awards and Honors 🏆

Dr. Jothi has been the recipient of numerous prestigious awards for her academic and research excellence. Some of the key recognitions include:

  1. IND-SL Pride of Education Awards – Best Researcher Award (2024)
  2. ASTRA 2023 – International Best Researcher Award
  3. Global Iconic Education Award 2022 – Best Researcher
  4. ISSN International Best Researcher Award (IIRA-2022)
  5. Bharat Ratna Dr. Radhakrishnan Gold Medal Award (2019)
  6. Best Teacher Award (2022)
    These accolades reflect Dr. Jothi’s profound impact on education and research.

Legacy and Future Contributions 🌱

Dr. Jothi’s legacy is marked by her continuous commitment to research excellence and student development. As a visionary educator, her future contributions are focused on pushing the boundaries of material science and nanotechnology. She aims to further her research into the applications of nanophysics in biomedical technologies and energy systems. As a mentor, she plans to continue guiding the next generation of scientists and innovators, ensuring that her legacy lives on in the work of her students and future researchers.

Publications Top Notes

Synthesis and controllable growth of 2–methylquinolinium L-malate single crystal for optical and spectroscopic applications
  • Authors: Vasughi, R., Kayalvizhi, M., Jothi, L., Abdullah, M.M., Albargi, H.B.
    Journal: Journal of Molecular Liquids
    Year: 2024
Synthesis, spectroscopic, optical, thermal and mechanical characterization of nonlinear proline oxalate single-crystals
  • Authors: Akilandeswari, S., Jothi, L., Elkhatib, W.F., Abu Ali, O.A., El-Sayyad, G.S.
    Journal: Optical and Quantum Electronics
    Year: 2023
Growth, structural, optical, Z-scan and dielectric analysis of 2-Amino-4-methylpyridinium 2-chloro 4-nitro benzoate crystals for third order non-linear optical applications
  • Authors: Venkatesan, K., Kayalvizhi, M., Jothi, L., Vasuki, G.
    Journal: Journal of Molecular Structure
    Year: 2022
Fabrication, Characterization and Optical Investigation of Semi-organic Nonlinear Alanine Hippurate Single Crystals
  • Authors: Akilandeswari, S., Jothi, L., Pal, K., Abd Elkodous, M., El-Sayyad, G.S.
    Journal: Journal of Cluster Science
    Year: 2022
Investigation on synthesis, growth, optical, mechanical, dielectric and third order non-linear optical properties of cadmium chloride monohydrate doped sulphamic acid crystals for nonlinear optical device fabrications
  • Authors: Anandaraj, L., Jothi, L.
    Journal: Journal of Molecular Structure
    Year: 2022

 

 

Abdul Muneeb| Experimental methods | Best Researcher Award

Mr. Abdul Muneeb| Experimental methods | Best Researcher Award

Research Associate at University of Engineering and Technology, Lahore, Pakistan

Abdul Muneeb, born on October 3, 1995, in Pakistan, is an emerging researcher in applied physics. He recently completed his MPhil from the University of Engineering and Technology (UET), Lahore. His academic journey has been marked by a profound commitment to advancing research in nanomaterials, photocatalysis, and experimental plasma physics. His MPhil thesis focused on fabricating Ag-TiO2 nanocomposites using Dielectric Barrier Discharge (DBD) plasma for the photodegradation of methylene blue. Abdul’s dedication to his field is reflected in his published works in high-impact international journals. Currently, he is pursuing a fully funded Ph.D. position to further explore photocatalysis and plasma-based materials, with the goal of making substantial contributions to both academia and industry.

Profile:

Education:

Abdul Muneeb holds an MPhil in Applied Physics from the University of Engineering and Technology (UET), Lahore, which he completed in 2022 with a CGPA of 3.15. His thesis focused on the photocatalytic activities of Ag-TiO2 nanocomposites, which he prepared using Dielectric Barrier Discharge (DBD) plasma. Throughout his education, he developed expertise in various advanced fields, including nanomaterials, experimental plasma physics, and material characterization techniques like XRD, FESEM, and UV-Vis spectroscopy. His coursework included specialized subjects such as photonics, optoelectronics, and advanced lasers. With a strong foundation in applied physics and hands-on experience with experimental techniques, Abdul’s academic training has prepared him for advanced research in plasma and nanotechnology fields.

Professional experience:

Abdul Muneeb has gained valuable experience as a Research Associate at the Faculty of Natural Sciences, UET Lahore, since 2022. In this role, he has been involved in designing and implementing research protocols, developing new product tests, and supervising junior researchers. He has contributed to various research publications and scholarly activities, focusing on nanomaterials and experimental plasma physics. Abdul also worked as a visiting lecturer at UET New Campus KSK from December 2022 to July 2023, where he delivered lectures on various physics topics and guided students through practical laboratory experiments. His experience in both academia and research has equipped him with the skills to effectively communicate scientific knowledge and contribute to cutting-edge research in his field.

Research focus:

Abdul Muneeb’s research focus lies at the intersection of nanotechnology, photocatalysis, and experimental plasma physics. His MPhil research primarily centered on the fabrication of Ag-TiO2 nanocomposites using Dielectric Barrier Discharge (DBD) plasma for environmental applications, specifically in the photodegradation of methylene blue. His work explores the potential of plasma-assisted synthesis methods to enhance the photocatalytic efficiency of nanomaterials. Additionally, Abdul’s interests extend to the development of novel metal oxide semiconductor photocatalysts and the characterization of materials using advanced techniques such as XRD, FESEM, and UV-Vis spectroscopy. He aims to contribute to the fields of plasma physics and nanomaterials by advancing the understanding of how plasma processes can be used to create innovative materials for environmental and industrial applications.

Awards and Honors:

Abdul Muneeb has received recognition for his academic excellence and research contributions. During his MPhil studies, he earned high grades in advanced subjects such as photonics, optoelectronics, and lasers, receiving praise from his professors for his exceptional skills. He secured third position in an energy-saving campaign poster competition during his undergraduate studies at the Government College of Science in Lahore. His research work has been acknowledged through publications in reputed international journals, including Physica B: Condensed Matter and Environmental Health Insights. Abdul has actively participated in various national and international conferences, presenting his research at the 5th International Conference on Material Science & Nanotechnology 2022, where he was a speaker. His dedication to pushing the boundaries of applied physics has earned him admiration from both his mentors and peers.

Publication Top Notes:

  • Publication Title: Emission of ions and electrons correlated with soft and hard x-rays evolution from thermal plasma
    Authors: Ahmad, A.N., Rafique, M.S., Arslan, M., Mahmood, H., Amir, M.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Atmospheric pressure plasma-assisted growth of hexagonal boron nitride nanosheets for improved aluminum hardness
    Authors: Mudassar, M., Rafique, M.S., Naveed, A., Aamir, M., Razaq, M.B.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Enhanced thermal conductivity of plasma generated ZnO–MgO based hybrid nanofluids: An experimental study
    Authors: Nazir, A., Qamar, A., Rafique, M.S., Fayaz, H., Saleel, C.A.
    Publication Year: 2024
    Citations: 3
  • Publication Title: Closed-Loop Implantable Neurostimulators for Individualized Treatment of Intractable Epilepsy: A Review of Recent Developments, Ongoing Challenges, and Future Opportunities
    Authors: Kassiri, H., Muneeb, A., Salahi, R., Dabbaghian, A.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Abatement of Aerosols by Ionic Wind Extracted From Dielectric Barrier Discharge Plasma
    Authors: Arshad, T., Rafique, M.S., Bashir, S., Shahadat, I., Nayab, N.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Fabrication of Ag–TiO2 nanocomposite employing dielectric barrier discharge plasma for photodegradation of methylene blue
    Authors: Muneeb, A., Rafique, M.S., Murtaza, M.G., Rafique, M., Nazir, A.
    Publication Year: 2023
    Citations: 3
  • Publication Title: Automated Door to Prevent COVID-19 using Fuzzy Logic
    Authors: Khokhar, S.-U.-D., Sohaib, R., Muneeb, A., Noor, M.Y., Imran, M.
    Publication Year: 2023
    Citations: 0
  • Publication Title: A 9.5ms-Latency 6.2μJ/Inference Spiking CNN for Patient-Specific Seizure Detection
    Authors: Muneeb, A., Mehrotra, S., Kassiri, H.
    Publication Year: 2023
    Citations: 1
  • Publication Title: Energy-Efficient Spiking-CNN-Based Cross-Patient Seizure Detection
    Authors: Muneeb, A., Kassiri, H.
    Publication Year: 2023
    Citations: 5
  • Publication Title: A 2.7μJ/classification Machine-Learning based Approximate Computing Seizure Detection SoC
    Authors: Muneeb, A., Ali, M., Altaf, M.A.B.
    Publication Year: 2022
    Citations: 7

 

 

Marzieh Abbasi-Firouzjah | Experimental methods | Best Researcher Award

Dr. Marzieh Abbasi-Firouzjah | Experimental methods | Best Researcher Award

Academician/Research Scholar at Hakim Sabzevari University, Iran

Marzieh Abbasi-Firouzjah is an Associate Professor in the Department of Sciences Engineering at Hakim Sabzevari University, Sabzevar, Iran. Born in 1984, she has established herself as a leading expert in plasma engineering, with a particular focus on the photonics field. Dr. Abbasi-Firouzjah has made significant contributions to thin film deposition technologies and plasma systems. Her extensive academic background and research have earned her numerous publications in highly respected journals. With years of experience in both teaching and research, she continues to advance the frontiers of plasma technology while contributing to the academic community through her editorial and review work for prestigious journals.

Profile:

Education:

Dr. Abbasi-Firouzjah completed her Ph.D. in Photonics, specializing in Plasma Engineering, at Shahid Beheshti University’s Laser & Plasma Research Institute from 2010 to 2014. Her doctoral research focused on investigating plasma parameters in silica-based thin films deposited using plasma-enhanced chemical vapor deposition (PECVD), under the supervision of Dr. Babak Shokri. Prior to her Ph.D., she obtained her M.Sc. in Plasma Engineering at the same institution, working on silicon oxide film deposition using TEOS vapor. She began her academic journey with a B.Sc. in Atomic and Molecular Physics from the University of Mazandaran, where she explored underwater acoustic wave tracking for her undergraduate project. Her diverse educational background underpins her advanced research in plasma systems and thin film technology.

Professional experience:

Dr. Abbasi-Firouzjah brings a wealth of experience in both research and teaching, having specialized in the design, construction, and application of plasma systems for thin film deposition. She has worked extensively with RF, MW, and DC pulsed plasma generators, and her expertise includes using PECVD, DBD, and Sputtering reactors. She is proficient in advanced spectroscopy methods and the operation of vacuum systems. Her technical skills extend to the construction of multifunctional systems for plasma chemical vapor deposition and pulsed laser deposition. Dr. Abbasi-Firouzjah is also involved in antibacterial testing and has reviewed research for leading journals like Diamond & Related Materials and IEEE Transactions on Nanotechnology. Her work has helped push the boundaries of plasma engineering applications in both industrial and academic contexts.

Research focus:

Dr. Abbasi-Firouzjah’s research primarily revolves around plasma-enhanced chemical vapor deposition (PECVD) techniques and their application in the fabrication of thin films. Her work explores the optimization of plasma parameters to improve the structural, electrical, and optical properties of silica-based films. She has made significant contributions to the development of transparent, hard optical coatings, as well as the antibacterial and wettability properties of plasma-modified surfaces for biomedical applications. Additionally, her research extends to the deposition mechanisms of silicon oxide films and fluorinated diamond-like carbon films, with a focus on improving the mechanical and electrochemical properties of multilayer coatings. Dr. Abbasi-Firouzjah’s work has implications for industries ranging from optics to biomedicine, where advanced materials are critical for innovation.

Awards and Honors:

Dr. Marzieh Abbasi-Firouzjah has received numerous accolades for her contributions to plasma engineering and thin film technologies. Her research publications, featured in high-impact journals such as Journal of Non-Crystalline Solids and Journal of Thin Solid Films, highlight her leading role in the field. She has been invited to present at major international conferences, including the International Conference on Plasma Surface Engineering and the IEEE International Conference on Plasma Sciences. Dr. Abbasi-Firouzjah’s pioneering work on transparent and hard optical coatings and antibacterial applications of plasma-modified materials has positioned her as a recognized figure in the scientific community. Her dedication to advancing plasma technologies has been acknowledged through her inclusion in prestigious academic and industrial journals.

Publication Top Notes:

  • FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD
    Authors: B. Shokri, M.A. Firouzjah, S.I. Hosseini
    Year: 2009
    Citation: 176
  • Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology
    Authors: F. Rezaei, M. Abbasi-Firouzjah, B. Shokri
    Year: 2014
    Citation: 104
  • The effect of TEOS plasma parameters on the silicon dioxide deposition mechanisms
    Authors: M. Abbasi-Firouzjah, S.I. Hosseini, M. Shariat, B. Shokri
    Year: 2013
    Citation: 60
  • Investigation of the properties of diamond-like carbon thin films deposited by single and dual-mode plasma enhanced chemical vapor deposition
    Authors: S.I. Hosseini, B. Shokri, M.A. Firouzjah, S. Kooshki, M. Sharifian
    Year: 2011
    Citation: 30
  • The effect of duty cycle on the mechanical and electrochemical corrosion properties of multilayer CrN/CrAlN coatings produced by cathodic arc evaporation
    Authors: N. Arab Baseria, M. Mohammadi, M. Ghatee, M. Abbasi-Firouzjah, et al.
    Year: 2020
    Citation: 27
  • Improving the oxygen barrier properties of PET polymer by radio frequency plasma-polymerized SiOxNy thin film
    Authors: M. Shahpanah, S. Mehrabian, M. Abbasi-Firouzjah, B. Shokri
    Year: 2019
    Citation: 25
  • Antibacterial properties of fluorinated diamond-like carbon films deposited by direct and remote plasma
    Authors: S.I. Hosseini, Z. Javaherian, D. Minai-Tehrani, R. Ghasemi, Z. Ghaempanah, et al.
    Year: 2017
    Citation: 18
  • Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature
    Authors: M. Abbasi-Firouzjah
    Year: 2015
    Citation: 15
  • Characteristics of ultra low-k nanoporous and fluorinated silica based films prepared by plasma enhanced chemical vapor deposition
    Authors: M. Abbasi-Firouzjah, B. Shokri
    Year: 2013
    Citation: 13
  • Deposition of high transparent and hard optical coating by tetraethylorthosilicate plasma polymerization
    Authors: M. Abbasi-Firouzjah, B. Shokri
    Year: 2020
    Citation: 12

 

 

Robert CHEHAB | Experimental methods | Best Innovation Award

Dr.Robert CHEHAB | Experimental methods | Best Innovation Award

Accelerator physicist at IN2P3/CNRS in France

Dr. Robert Chehab, born on October 22, 1937, in Alexandria, Egypt, is a renowned physicist specializing in accelerator physics. He holds French nationality and has had a prestigious academic and scientific career. Dr. Chehab completed his engineering degree from the prestigious École Nationale Supérieure des Télécommunications (now TELECOM-Paris-Tech) in 1963, followed by a PhD in Physical Sciences from Université d’Orsay in 1975. His work has been instrumental in advancing our understanding of positron sources, channeling radiation, and radiation physics. Over his career, he has collaborated with leading institutions such as CERN, KEK, DESY, and SLAC. As a scientist and educator, he has mentored PhD students in radiation and positron source research. Fluent in five languages, Dr. Chehab has contributed significantly to accelerator physics research globally.

Profile:

Education:

Dr. Robert Chehab’s academic journey began at the École Nationale Supérieure des Télécommunications (ENST), now known as TELECOM-Paris-Tech, where he obtained his engineering degree in 1963. His rigorous technical education at ENST laid the foundation for his subsequent focus on accelerator physics. In 1975, he earned his PhD (Docteur-Ingénieur en Sciences Physiques) from the Université d’Orsay. His PhD work explored fundamental concepts in radiation physics and beam dynamics, setting the stage for a prolific research career. Throughout his educational journey, Dr. Chehab showed a deep understanding of complex scientific phenomena such as Cherenkov radiation, positron sources, and channeling radiation, positioning himself as a leading figure in his field. His multidisciplinary expertise has also allowed him to maintain fluency in French, English, Italian, Russian, and Arabic, further enhancing his global scientific impact.

Professional experience:

Dr. Robert Chehab has accumulated extensive experience in both academic and international research environments. He has spent a significant portion of his career at Université Paris-Saclay, where he has led various research projects on accelerator physics. Dr. Chehab has worked in prestigious laboratories worldwide, including extended stays at KEK in Japan, where he conducted research on positron sources and channeling radiation. He also contributed to experiments at DESY in Germany, focusing on transition radiation, and collaborated with BINP-Novosibirsk on channeling radiation studies. His leadership at CERN, particularly in the WA 103 experiment, has cemented his reputation as a leader in accelerator and radiation physics. Additionally, Dr. Chehab has supervised PhD students and played a critical role in mentoring the next generation of scientists.

Research focus:

Dr. Robert Chehab’s research focuses primarily on accelerator physics, with an emphasis on radiation studies. His work spans various topics, including positron sources, channeling radiation, Cherenkov radiation, transition radiation, and photoemission. He has been actively involved in understanding and developing novel radiation physics techniques for advanced accelerator applications. Dr. Chehab’s research also delves into beam dynamics and RF deflectors, expanding the theoretical and practical frameworks of accelerator science. His notable collaborations with CERN on positron source development for the LEP experiment and SLAC on crystal radiator damage tests have pushed the boundaries of what is known about particle interactions with radiation. His work is essential for innovations in particle accelerators, helping to develop the technology used in numerous high-energy physics experiments.

Awards & Honor:

Throughout his distinguished career, Dr. Robert Chehab has been recognized for his contributions to accelerator physics and radiation studies. He has been involved in numerous international collaborations with esteemed institutions such as CERN, KEK, SLAC, and DESY, where his innovative research in positron sources and radiation physics has earned him accolades. Dr. Chehab’s leadership in major projects, such as the LEP positron source collaboration at CERN, has further solidified his stature in the scientific community. His research has been published in leading journals like Nuclear Instruments and Methods, Physical Review, and Physics Letters. While his awards and recognitions are primarily rooted in his research, his contribution to academic mentorship, especially his guidance of PhD students in advanced radiation physics, has been equally commendable. His work continues to impact both experimental methods and the broader scientific community.

Publication Top Notes:

  • From bremsstrahlung to channeling radiation: A promising way for positron generation
    Chehab, R.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1060, 169056
    Citations: 0
  • Advantages of hybrid positron sources with granular converters
    Chehab, R., Chaikovska, I., Alharthi, F., Wallon, S., Sievers, P.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1060, 168994
    Citations: 0
  • Benchmarking the FCC-ee positron source simulation tools using the SuperKEKB results
    Alharthi, F., Chaikovska, I., Chehab, R., Miyahara, F., Mytrochenko, V.
    Journal of Physics: Conference Series, 2024, 2687(2), 022010
    Citations: 0
  • Radiation in oriented crystals: Innovative application to future positron sources
    Soldani, M., Alharthi, F., Bandiera, L., Sytov, A., Tikhomirov, V.
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1058, 168828
    Citations: 1
  • Crystal-based pair production for a lepton collider positron source
    Bandiera, L., Bomben, L., Camattari, R., Tikhomirov, V., Vallazza, E.
    European Physical Journal C, 2022, 82(8), 699
    Citations: 6
  • Positron sources: From conventional to advanced accelerator concepts-based colliders
    Chaikovska, I., Chehab, R., Kubytskyi, V., Hogan, M.J., Martyshkin, P.
    Journal of Instrumentation, 2022, 17(5), P05015
    Citations: 12
  • HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4
    Abada, A., Abbrescia, M., AbdusSalam, S.S., Zupan, J., Zurita, J.
    European Physical Journal: Special Topics, 2019, 228(5), pp. 1109–1382
    Citations: 159
  • FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3
    Abada, A., Abbrescia, M., AbdusSalam, S.S., Zupan, J., Zurita, J.
    European Physical Journal: Special Topics, 2019, 228(4), pp. 755–1107
    Citations: 501
  • FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1
    Abada, A., Abbrescia, M., AbdusSalam, S.S., Zupan, J., Zurita, J.
    European Physical Journal C, 2019, 79(6), 474
    Citations: 540
  • FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2
    Abada, A., Abbrescia, M., AbdusSalam, S.S., Zupan, J., Zurita, J.
    European Physical Journal: Special Topics, 2019, 228(2), pp. 261–623
    Citations: 619

Conclusion:

Dr. Robert Chehab’s extensive experience, significant contributions to accelerator physics, and international collaborations make him a strong candidate for the Best Researcher Award. His mentorship and prolific publication record add to his credentials. To further elevate his impact, engaging with newer fields of research and amplifying his public outreach would strengthen his candidacy for future recognitions.