Kriti Ranjan Sahu | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Kriti Ranjan Sahu | Experimental methods | Best Researcher Award

Dr. Kriti Ranjan Sahu is a distinguished physicist and academic leader, currently serving as the Head of the Department of Physics and Assistant Professor at Bhatter College, Dantan (Autonomous) in Paschim Medinipur, West Bengal, India. With a strong background in material science, applied physics, and experimental techniques, Dr. Sahu has made pioneering contributions across multiple fields of science including piezoelectric materials, superconductivity, and optical technologies.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Sahu’s academic journey began in Tickrapara Ambikyamoye High School, culminating in his B.Sc in Physics from P.K. College, Contai under Vidyasagar University in 2002. He pursued his M.Sc in Physics from G.G.D. University, Bilaspur, securing a strong academic footing with 64.39% marks in 2004. He earned his PhD in 2016 from Jadavpur University, working under Prof. Dr. Udayan De (Retd. Senior Scientist at VECC, Kolkata) with a thesis focused on “Study of Some Piezoelectric and Other Oxides and of Their Polymeric Composites for Applications“.

🧑‍🏫 Professional Endeavors

Dr. Sahu began his teaching career as a Lecturer and HoD in Egra S.S.B. College in 2005, later transitioning to Bhatter College in 2019 as a full-time Assistant Professor and Department Head. With over 19 years of academic service, he is a veteran educator deeply committed to student-centric scientific inquiry and interdisciplinary learning.

🧪 Contributions and Research Focus

Dr. Sahu has spearheaded numerous innovative research projects and groundbreaking discoveries. He developed a novel and safe technique for preparing orthorhombic PbNb₂O₆ piezoelectric material in 2014, widely used in nuclear imaging sensors. In 2020, he reported a surprising ~8°C enhancement in the superconducting transition temperature of Fe-based superconductors due to Ar⁶⁺ ion beam irradiation. In 2022, he invented a new laser-based experimental method for measuring refractive indices in solid materials, suitable for undergraduate laboratories. He also discovered a new natural cellulosic fiber from Cyperus compactus (2023), and synthesized high-quality Na₂O–ZnO–TeO₂ glasses for optical communication (2020–2023).

🌐 Impact and Influence

Dr. Sahu’s work has gained national and international recognition. His cutting-edge research has been published in top-tier journals like Physica C, Carbohydrate Polymer Technologies, Glass Physics and Chemistry, and Journal of Physics and Chemistry of Solids. His findings in superconductivity and piezoelectric materials have laid foundational work for future advancements in sensor technology, nuclear applications, and sustainable electronics.

📚 Academic Cites and Publications

Dr. Sahu has made extensive contributions to peer-reviewed literature with numerous publications across Q1 to Q4 journals. Notably, he reported a remarkable 50% increase in superconducting critical temperature (Tc) due to ion implantation, published in Physica C (2025). His work on the characterization of a new natural cellulosic fiber appeared in Carbohydrate Polymer Technologies (2023). He also introduced a laser-based refractive index measurement technique featured in The Physics Teacher (2022). Additionally, Dr. Sahu has co-authored several papers on glass materials, organic solar cells, and the effects of ion irradiation, showcasing his broad research expertise.

🧠 Research Skills

Dr. Sahu possesses a wide range of research skills encompassing material synthesis, including piezoelectrics, superconductors, EMI shielding composites, and glass materials. He is proficient in advanced characterization techniques such as XRD, UV-Vis spectroscopy, SEM, TEM, FTIR, DSC, DTA, TGA, impedance analysis, and vector network analysis (VNA). His expertise also extends to device fabrication, particularly in creating organic solar cells. Additionally, Dr. Sahu has conducted numerous irradiation experiments using gamma rays and ion beams at renowned facilities like UGC-DAE, IUAC, and SAMEER, reflecting his strong interdisciplinary research capabilities.

👨‍🏫 Teaching Experience

Dr. Sahu has nearly two decades of teaching experience. He has been instrumental in integrating innovative lab experiments, interdisciplinary research modules, and undergraduate research projects into college curricula. His initiative, BASIS (Bengal Academic Society for Interactive Sciences), has helped UG/PG students showcase poster-based research across colleges.

🏆 Awards and Honors

  • 🥇 International Research Award (2020) by RULA and World Research Council for outstanding work on piezoelectric spectroscopy.

  • 📜 Certificate of Publication from Thermochimica Acta for significant findings on Nb₂O₅ phase in PbNb₂O₆ formation.

  • 🧾 Life Member of Indian Association of Physics Teachers (IAPT).

📝 Editorial Roles and Peer Review

  • Associate Editor: Bhatter College Journal of Multidisciplinary Studies, since 2023.

  • Editorial Member: International Journal of Materials Science and Applications (USA).

  • Reviewer: International Journal of Energy Research, Material Science Research India.

🔬 Legacy and Future Contributions

Dr. Kriti Ranjan Sahu continues to inspire scientific curiosity through poster-based symposiums, interactive webinars, and hands-on experimental training under the umbrella of BASIS. His commitment to low-cost science education, research democratization, and young investigator mentorship ensures a lasting impact on the next generation of physicists and applied researchers. Looking ahead, Dr. Sahu aims to bridge research with industry, focusing on green technologies, high-Tc superconductors, and materials for next-gen optics and electronics.

Top Noted Publications

Superconducting Single Crystals Show About 50% Increase of the Superconducting Critical Temperature after Ar Ion Implantation

  • Authors: Sahu, K.R.; Wolf, T.; Mishra, A.K.; Chakraborty, K.R.; Banerjee, A.; Ganesan, V.; De, U.
    Journal: SSRN (Other)
    Year: 2025

Characterization of new natural cellulosic fibers from Cyperus compactus Retz. (Cyperaceae) Plant

  • Authors: Bhunia, A.K.; Mondal, D.; Sahu, K.R.; Mondal, A.K.
    Journal: Carbohydrate Polymer Technologies and Applications
    Year: 2023

Enhancement of Optical and Electrical Properties of Pr³⁺ Doped Na₂O–ZnO–TeO₂ Glass Materials

  • Authors: Mirdda, J.N.; Mukhopadhyay, S.; Sahu, K.R.; Goswami, M.N.
    Journal: Glass Physics and Chemistry
    Year: 2023

Modification of Optical Bandgap and Formation of Carbonaceous Clusters Due to 1.75 MeV N⁵⁺ Ion Irradiation in PET Polymers and Search for Chemical Reaction Mechanisms

  • Authors: Prasad, S.G.; Lal, C.; Sahu, K.R.; De, U.
    Journal: Biointerface Research in Applied Chemistry
    Year: 2023

Ultrastructural and Spectroscopic Analysis of Lignin of Stone Cells in Mimusops elengi L. (Sapotaceae) Fruit Mesocarp

  • Authors: Khatun, M.; Sahu, K.R.; Mondal, A.K.
    Journal: Biointerface Research in Applied Chemistry
    Year: 2023

 

 

ِAhmed Abdelhady A. Khalil | Experimental methods | Best Researcher Award

ِDr. Ahmed Abdelhady A. Khalil | Experimental methods | Best Researcher Award

Cairo University, National Institute of Laser Enhanced Sciences | Egypt

Ahmed Abd El-Hady Abd El-Moaty Awad, also known by his scientific name Ahmed Abdelhady A. Khalil, is a highly accomplished scholar and researcher in the field of laser systems and non-linear optics. His academic background spans multiple degrees, including a B.S. in Special Physics from Cairo University, an M.Sc. in Laser Systems from the National Institute of Laser Enhanced Sciences (NILES), and a Ph.D. in Laser Systems (2024). His work focuses on materials science, photodetectors, and energy harvesting, particularly within the scope of transition metal dichalcogenides (TMDCs) and photodiodes.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Ahmed’s academic journey began at Cairo University, where he completed his B.S. in Special Physics in 2006 with high honors. This early pursuit laid the foundation for his deep interest in laser science and optics. In 2010, he pursued advanced coursework for a Master’s degree and continued further studies, earning his M.Sc. in Laser Systems in 2016 from NILES, Cairo University. He later completed predoctoral courses in 2021 before obtaining his Ph.D. in 2024, marking a significant milestone in his educational journey.

Professional Endeavors 💼

Ahmed’s professional path has been closely intertwined with teaching and research. Starting as a Teaching Assistant in 2008, he worked his way up to an Assistant Lecturer by 2018, and eventually a Lecturer in 2024 at the Department of Laser Science and Interaction (LSI), NILES. His professional growth highlights his dedication to education and his ability to mentor the next generation of laser scientists. Additionally, he has contributed to the Nanophotonics Research Laboratory at the American University in Cairo under the guidance of Prof. Mohamed A. Swillam.

Contributions and Research Focus 🔬

Ahmed’s research is centered on laser systems, non-linear optics, and materials science, with particular emphasis on energy harvesting and photodetectors. His work on transition metal dichalcogenides (TMDCs) and MoS2-based photodiodes has been groundbreaking, contributing to the development of novel, fast-response photodetectors. Through his research, Ahmed seeks to advance the performance of photodetection systems, enhancing their speed and efficiency for use in modern optical technologies. His publications in international journals showcase his research in high-impact areas, such as his work on SiC/MoS2 composites and GaN/MoS2 photodiodes.

Impact and Influence 🌍

Ahmed’s work has had a significant impact on the scientific community, particularly in the fields of nanophotonics and laser technology. His research on 2D semiconductor dopants and photodiodes is influencing the future of energy-efficient devices and high-speed photodetectors. His collaborations with renowned scientists, particularly through conferences and journal publications, have helped establish him as a prominent researcher in the laser systems community. By integrating cutting-edge materials into photodetectors, his work is laying the foundation for future innovations in quantum computing and photonics.

Research Skills 🧠

Ahmed has demonstrated high-level research skills throughout his career. He is proficient in experimental techniques such as laser fabrication, thin-film deposition, and characterization of optical materials. His expertise extends to numerical simulations and optical design, making him well-versed in the computational aspects of laser systems and non-linear optics. Additionally, his ability to collaborate with interdisciplinary research groups has enhanced his versatility in applying his findings across various domains of physics and engineering.

Teaching Experience 🎓

As an educator, Ahmed has played a pivotal role in shaping the academic careers of many students in the field of laser science. His teaching experience spans over a decade, during which he has taught a wide range of undergraduate and graduate courses in laser systems and non-linear optics. He has also been involved in supervising student research projects, helping students bridge the gap between theoretical knowledge and practical application in laser technology. His commitment to academic excellence and student development is evident in his approach to innovative teaching.

Awards and Honors 🏆

Throughout his career, Ahmed has earned several awards and honors, including recognition for his outstanding research in photonics and laser systems. His publications in high-impact journals and participation in prestigious conferences are a testament to his academic achievements. His ongoing work, particularly in the TMDC photodetector domain, has garnered international attention and positions him as a leading researcher in materials science.

Legacy and Future Contributions 🚀

Ahmed’s future contributions hold the potential to further transform the field of laser systems and photodetectors. As he continues to explore innovative materials and their applications in energy-efficient technologies, his research is likely to lead to breakthrough advancements in optical communication, quantum computing, and energy harvesting. His legacy as an educator and researcher will inspire future generations of scientists and engineers, further solidifying his position as a leading figure in nanophotonics and laser research.

Publications Top Notes

Thin-film photodiode based on novel SiC/MoS2 composite by RF-sputtering for fast response photodetection

  • Authors: AAA Khalil, AM Karmalawi, AA Abdelmageed, FM EL-Sharkawy, E Mousa, …
    Journal: Optical Materials
    Year: 2024

Impact behavior of a novel GaN/MoS2 composite photodiode based thin-film by RF-sputtering for fast response photodetection application

  • Authors: AAA Khalil, AM Karmalawi, AA Abdelmageed, HAS Al-shamiri, E Mousa, …
    Journal: Optical and Quantum Electronics
    Year: 2024

Fast response fabricated MoS2-photodiode based thin film

  • Authors: AAA Khalil, AM Karmalawi, AA Abdelmageed, HAS Al-shamiri, …
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024

Behavior effect of Semiconductor 2D dopants on time response of TMDC-MoS2 based Schottky-photodiode

  • Authors: AAA Khalil, MTH Abou Kana, MA Swillam
    Journal: 2024 Photonics North (PN)
    Year: 2024

 

 

 

Muhammad Ishaq | Experimental methods | Best Researcher Award

Dr. Muhammad Ishaq | Experimental methods | Best Researcher Award

Shenzhen University | China

Muhammad Ishaq, Ph.D. in Semiconductor Physics and Optical Engineering, is an open-minded and adaptable researcher with a profound passion for applied research and teaching. With experience across diverse environments, he has contributed extensively to the field of solar energy technologies, including thin-film solar cells. Currently, he is an academic researcher at Shenzhen University, China. His global perspective has been honed through multiple international collaborations, notably at Huazhong University of Science and Technology and Shenzhen University.

👨‍🎓Profile

Google scholar

Scopus 

ORCID

Early Academic Pursuits 📚

Muhammad Ishaq’s academic journey began with a Bachelor’s degree in Physics from the University of Peshawar (2012), followed by a Master’s degree in Physics from Abdul Wali Khan University, Pakistan (2016), where he focused on Titanium Dioxide Thin Film for Dye-Sensitized Solar Cells. He went on to earn his Ph.D. in Semiconductor Physics/ Optical Engineering from Huazhong University of Science and Technology, China in 2019, where he specialized in Antimony Chalcogenide Flash Evaporation for thin-film solar cell applications.

Professional Endeavors 💼

After completing his Ph.D., Dr. Ishaq furthered his academic journey with a Post-doctoral Fellowship at Shenzhen University, where he specialized in Sb-chalcogenide, CZTS/Se, and Perovskite solar cells. He is currently a Research Associate at Shenzhen University, China, in the College of Physics and Optoelectronic Engineering. His work focuses on solar energy technologies and material science, where he is driving advancements in energy efficiency.

Contributions and Research Focus 🔬

Dr. Ishaq’s research is innovative and multi-disciplinary, with a primary focus on solar energy and semiconductor physics. He is particularly interested in the development of thin-film solar cells using antimony chalcogenides, perovskites, and copper-doped antimony sulfide. His work aims to improve the efficiency and stability of solar cells by optimizing their material properties through various synthesis methods like physical vapor deposition, sol-gel processing, and chemical vapor deposition. Through this, he contributes to addressing the global energy crisis by advancing renewable energy solutions.

Impact and Influence 🌍

Dr. Ishaq has made significant contributions to the field of solar energy through his innovative research and groundbreaking work. His research has not only advanced the understanding of thin-film solar cell applications but also paved the way for creating more sustainable and cost-effective solar technologies. His work has gained recognition through numerous publications, conference presentations, and collaborations with leading experts in semiconductor physics.

Academic Citations 📚

Dr. Ishaq’s research has garnered wide recognition within the scientific community. His publications in high-impact journals like Nano-Micro Letters, Progress in Photovoltaics, and Advanced Functional Materials have earned substantial citations, making a global impact on semiconductor physics and solar energy technologies.

Research Skills 🔧

Dr. Ishaq possesses extensive skills in research techniques including:

  • UV-Vis Spectroscopy
  • Atomic Force Microscopy
  • Scanning Electron Microscopy (SEM)
  • X-ray Diffraction (XRD)
    Additionally, he has vast experience in synthesizing advanced materials using techniques like physical vapor deposition and chemical vapor deposition. His ability to adapt to cutting-edge methods in material science strengthens his contributions to the development of next-generation solar technologies.

Teaching Experience 🍎

Dr. Ishaq has demonstrated a deep commitment to teaching and mentorship in academia. His roles as a lecturer and assistant director have honed his skills in educating and guiding students, particularly in Physics and solar energy applications. His academic guidance has fostered a generation of students prepared to tackle the challenges in applied science.

Awards and Honors 🏆

Dr. Ishaq’s outstanding contributions have been recognized with several awards and scholarships, such as:

  • Top Poster Presenter Award at the International Conference on Next Generation Energy Technologies (2016)
  • Academic Excellence Award and Graduate Honor Award at Huazhong University of Science and Technology (2019)
  • Ph.D. Scholarship from the Chinese Scholarship Council (2016-2019)

Legacy and Future Contributions 🌟

As a dedicated researcher and teacher, Dr. Ishaq’s future contributions are poised to continue impacting the fields of semiconductor physics and solar energy. His research on novel materials for energy applications positions him to make significant strides in sustainable energy solutions, and his commitment to teaching will inspire future generations of scientists and engineers to innovate and contribute to global sustainability.

Publications Top Notes

Introducing atomistic dynamics at van der Waals surfaces for enhancing the thermoelectric performance of layered Bi0.4Sb1.6Te3

  • Authors: Adil Mansoor; Bushra Jabar; Syed Shoaib Ahmad Shah; Muhammad Sufyan Javed; Tayyaba Najam; Muhammad Ishaq; Shuo Chen; Fu Li; Xiao-Lei Shi; Yue-Xing Chen et al.
    Journal: Energy & Environmental Science
    Year: 2025

High-performance flexible Sb₂Se₃ thin-film photodetector for tunable color imaging and wearable physiological monitoring applications

  • Authors: Shuo Chen; Hong-Bo Li; Yi Fu; Guo-Qiang Liu; Muhammad Ishaq; Jun Luo; Jian-Min Li; Bo Che; Jing-Ting Luo; Liming Ding et al.
    Journal: Nano Research
    Year: 2025

Suppressing weak-light voltage attenuation in Sb₂S₃ indoor photovoltaics using Li-doped TiO₂ layer

  • Authors: Kefei Wu; Hui Deng; Xinxin Feng; Jinwei Hong; Guidong Wang; Muhammad Ishaq; Caixia Zhang; Qiao Zheng; Weihuang Wang; Jionghua Wu et al.
    Journal: Nano Research
    Year: 2025

A Deep Dive into Cu₂ZnSnS₄ (CZTS) Solar Cells: A Review of Exploring Roadblocks, Breakthroughs, and Shaping the Future

  • Authors: Shah, Usman Ali; Wang, Ao; Ullah, Muhammad Irfan; Ishaq, Muhammad; Shah, Imtiaz Alam; Zeng, Yiyu; Abbasi, Misbah Sehar; Umair, Muhammad Ali; Farooq, Umar; Liang, Guang-Xing et al.
    Journal: Small
    Year: 2024

A novel Se-diffused selenization strategy to suppress bulk and interfacial defects in Sb₂Se₃ thin film solar cell

  • Authors: He, Haiying; Zhong, Yiming; Zou, Wanying; Zhang, Xinyu; Zhao, Jun; Ishaq, Muhammad; Liang, Guangxing
    Journal: Surfaces and Interfaces
    Year: 2024