Yongqiang Ji | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Yongqiang Ji | Experimental methods | Best Researcher Award

Henan Academy of Sciences | China

Ji Yongqiang is a highly accomplished researcher specializing in nanomaterials, particularly quantum dots and optical devices like QLEDs and solar cells. He is currently serving as an Associate Researcher at the Henan Academy of Sciences and has previously held positions as an Assistant Researcher at Peking University and a PhD student at Xi’an Jiaotong University. His research has earned him recognition for his work in luminescent nanocrystals and perovskite quantum dots, driving innovations in solar cell technology and light-emitting devices.

πŸ‘¨β€πŸŽ“Profile

Scopus

Orcid

πŸ“š Early Academic Pursuits

Ji’s academic journey began at Xi’an University of Technology, where he earned his Bachelor’s in Applied Physics. Under the guidance of Associate Professor Men Shouqiang, he laid a strong foundation in solid-state physics, digital circuits, and quantum mechanics. His interest in material science and semiconductor physics grew during his master’s at Henan University, where he worked with Professor Qian Lei and contributed significantly to condensed matter physics. His doctoral studies at Xi’an Jiaotong University under Professor Wang Minqiang focused on electronic ceramics and device technologies, marking the start of his journey into nanomaterials and optoelectronics.

πŸ”¬ Professional Endeavors

Ji’s career has been characterized by exceptional research leadership and contributions to luminescent nanocrystals, quantum dot solar cells, and QLEDs. At Peking University, under Professor Gong Qihuang, he developed cutting-edge devices and optimized fabrication platforms for quantum dots, which enhanced device efficiency and stability. His hands-on expertise spans from magnetron sputtering to transmission electron microscopy (TEM), showcasing his proficiency in advanced research instruments.

πŸ’‘ Contributions and Research Focus

Ji’s research is driven by the fabrication and spectral tuning of luminescent nanocrystals, particularly quantum dots and perovskite quantum dots. Key contributions include:

  • Quantum Dot Solar Cells: He developed a precise fabrication platform for AgBiS2 quantum dots, optimizing light absorption and solar cell efficiency.
  • QLED Device Optimization: By improving spin-coating speeds and nanocrystal concentrations, Ji achieved high-brightness QLEDs, pushing the boundaries of light-emitting devices.
  • Perovskite Nanostructures: He pioneered research into 1D nanostructures and core-shell structures, improving optical properties and stability for applications in optical communication and energy harvesting.

🌍 Impact and Influence

Ji’s work has left a lasting impact in the fields of nanotechnology, optical devices, and energy solutions. His research on quantum dot solar cells and QLEDs is essential for the advancement of renewable energy technologies and next-generation display systems. Through his collaborations with leading institutions like Peking University and Henan Academy of Sciences, Ji has not only advanced scientific understanding but also contributed to the commercialization of advanced technologies.

πŸ“‘ Academic Cites

Ji’s research is widely cited in high-impact journals such as Nanotechnology, Micromachines, Materials, and Nano-Structures & Nano-Objects. His work on perovskite quantum dots and quantum dot solar cells has been instrumental in shaping contemporary research in renewable energy and optoelectronics. His publications have earned recognition for their novelty, technical depth, and practical applications.

πŸ› οΈ Research Skills

Ji’s technical expertise is multifaceted, and his key research skills include:

  • Synthesis Methods: Mastery in hot injection, solvothermal, and ball-milling techniques to prepare quantum dots.
  • Device Fabrication: Expertise in QLED and solar cell fabrication, optimizing processes like spin coating and annealing to enhance device performance.
  • Material Characterization: Proficient in TEM, PR745 LED testing systems, and vacuum coating for material analysis and device testing.

🏫 Teaching Experience

Ji has shared his knowledge as a mentor to graduate students at Henan University and Xi’an Jiaotong University, guiding them through complex topics in semiconductor physics and material science. His role as a reviewer for various scientific journals demonstrates his commitment to fostering academic growth and providing critical feedback to emerging researchers in the field.

πŸ† Awards and Honors

Ji’s academic excellence is reflected in numerous awards and scholarships, including:

  • Third-Class Scholarship at Xi’an University of Technology (2012)
  • First-Class Academic Scholarship at Henan University (2014)
  • Yao Xi Ferroeletric Scholarship at Xi’an Jiaotong University (2020)
  • Boya Postdoctoral Program at Peking University (2021)
  • Outstanding Graduate of Shaanxi Province (2022)

🌟 Legacy and Future Contributions

Looking ahead, Ji is well-positioned to continue making groundbreaking contributions to the fields of nanotechnology and energy solutions. His ongoing projects in perovskite QLEDs and quantum dot solar cells are poised to lead to more efficient, durable, and cost-effective devices. His expertise in quantum materials will likely play a crucial role in the future development of sustainable energy technologies and advanced optoelectronic systems. Ji’s commitment to interdisciplinary research and mentorship ensures a bright future for both his career and the next generation of researchers.

Publications Top Notes

Group-VA Doped ZnO Injection Layer for Bright and Efficient Perovskite Light-Emitting Diodes

  • Authors: X. Yang, Y. Ji, Q. Li, C. Lu, R. Zhu
    Journal: Advanced Functional Materials
    Year: 2025

Surface-enhanced Raman scattering of R6G dimerization during self-healing of gel

  • Authors: Y. Zhou, M. Wang, J. Wang, N.V. Gaponenko, A.S. Bhatti
    Journal: Mikrochimica Acta
    Year: 2025

Solvent-Engineering-Assisted Ligand Exchange Strategy for High-Efficiency AgBiS2 Quantum Dot Solar Cells

  • Authors: Q. Zhong, B. Zhao, Y. Ji, R. Zhu, L. Zhao
    Journal: Angewandte Chemie – International Edition
    Year: 2024

Lateral Phase Heterojunction for Perovskite Microoptoelectronics

  • Authors: L. Li, H. Yan, S. Li, X. Wang, R. Zhu
    Journal: Advanced Materials
    Year: 2024

Ligand-Tuned AgBiS2 Planar Heterojunctions Enable Efficient Ultrathin Solar Cells

  • Authors: J. Chen, Q. Zhong, E. Sirotti, R. Zhu, I.D. Sharp
    Journal: ACS Nano
    Year: 2024

 

Roe-Hoan Yoon | Weak interactions| Best Researcher Award

Prof. Roe-Hoan Yoon | Weak interactions| Best Researcher Award

Virginia Tech, United States

Roe-Hoan Yoon, born on November 21, 1943, in Seoul, Korea, is a distinguished academic and researcher in mining and materials engineering. A naturalized U.S. citizen since 1985, he serves as the Nicholas T. Camicia Professor and University Distinguished Professor at Virginia Tech. With a career spanning over five decades, Yoon is recognized for his contributions to mineral processing, particularly in flotation technologies. His leadership roles include directing the Center for Coal and Minerals Processing and the Center for Advanced Separation Technologies. An influential figure in his field, Yoon’s research and mentorship have profoundly impacted both academia and industry.

ProfileπŸŽ“

Early Academic Pursuits πŸ“š

Roe-Hoan Yoon began his academic journey by earning a B.Eng. in Mining Engineering from Seoul National University in 1967. He then moved to McGill University in Canada, where he achieved both his M.Sc. (1971) and Ph.D. (1977) in Metallurgical Engineering, consistently earning a place on the Dean’s Honors List. This rigorous academic foundation equipped him with the essential knowledge and skills that would later inform his groundbreaking research in mineral processing.

Professional Endeavors πŸ’Ό

Yoon’s professional career commenced as a Research Engineer at the Korea Institute of Science and Technology. He then served as a Research Scientist at the Canada Center for Minerals and Energy Technology before joining Virginia Tech as an Associate Professor in 1979. Over the years, he ascended to roles such as Professor and Nicholas T. Camicia Professor, while also directing the Center for Coal and Minerals Processing and the Center for Advanced Separation Technologies. His diverse experiences have solidified his reputation as a leader in the field.

Contributions and Research Focus πŸ”¬

Yoon’s research primarily centers on mineral processing, particularly in flotation technologies. He is renowned for his innovative work on collectorless flotation and the use of micro-bubbles in coal flotation. His research addresses key challenges in the industry, such as improving efficiency and sustainability. Yoon’s contributions have resulted in numerous publications that advance theoretical and practical understanding in mineral processing.

Impact and Influence 🌍

Yoon’s impact extends beyond his research; he has significantly influenced the academic community through his leadership roles in professional societies and editorial boards. His recognition as a Distinguished Member of the Society of Mining Engineers and a Foreign Associate of the Academy of Engineering of Korea highlights his contributions. His work has inspired a new generation of engineers and researchers, furthering advancements in the mining and materials engineering fields.

Academic Citations πŸ“ˆ

Yoon has authored and co-authored numerous refereed journal articles, garnering citations that reflect his profound influence in the field. His publications, such as those in the International Journal of Mineral Processing and Journal of Colloid and Interface Science, are frequently referenced, underscoring the relevance and applicability of his research. His work continues to shape discussions and advancements in mineral processing methodologies.

Technical Skills πŸ› οΈ

With expertise in surface chemistry, flotation systems, and image analysis techniques, Yoon possesses a comprehensive skill set that encompasses both theoretical and practical aspects of mineral engineering. His ability to integrate complex concepts with innovative technologies has positioned him as a pivotal figure in the advancement of mineral processing techniques.

Teaching ExperienceΒ πŸ‘¨β€πŸ«

Yoon’s teaching career at Virginia Tech has been marked by a commitment to student success and academic excellence. As a University Distinguished Professor, he has guided countless students, fostering their development in mining and minerals engineering. His mentorship extends to collaborative research projects, enriching the educational experience and preparing students for impactful careers in the industry.

Legacy and Future Contributions 🌟

Roe-Hoan Yoon’s legacy is one of innovation, leadership, and mentorship. As he continues to contribute to research and education, his future work is likely to focus on sustainable practices in mineral processing and further advancements in flotation technologies. His enduring impact on both academia and industry will undoubtedly shape the future of mining and materials engineering for years to come.

Publication Top NotesπŸ“–

Article: Maximizing the recovery and throughput of a rougher flotation bank by improving the recovery of composite particles
  • Authors: Gupta, M., Yoon, R.-H.
    Publication Year: 2024
    Citations: 1
Conference Paper: CLEANING AND UTILIZATION OF WASTE COAL FOR GRAPHITE APPLICATIONS
  • Authors: Morgan, D.R., Yoon, R.-H., Noble, A.
    Publication Year: 2024
    Citations: 0
Book Chapter: Rare earth extraction from ion-adsorption clays in U.S. coal by-products
  • Authors: Yoon, R.-H.
    Publication Year: 2023
    Citations: 0
Article: Improving the performance of a low-grade porphyry copper ore flotation plant using a simulator that can predict grade vs. recovery curves
  • Authors: Gupta, M., Huang, K., Noble, A., Yoon, R.-H.
    Publication Year: 2023
    Citations: 2
Article: Rare earth ion-adsorption clays in the presence of iron at basic pH: Adsorption mechanism and extraction method
  • Authors: Feng, X., Onel, O., Council-Troche, M., Yoon, R.-H., Morris, J.R.
    Publication Year: 2023
    Citations: 7

 

 

Sang-Wook Han | Experimental methods | Excellence in Research

Prof Dr. Sang-Wook Han | Experimental methods | Excellence in Research

Professor at Jeonbuk National University, South Korea

Professor Sang-Wook Han is a distinguished academic in the field of Physics Education at Jeonbuk National University, South Korea. With a profound commitment to advancing nanoscience and condensed matter physics, he has significantly contributed to the understanding of microstructural properties of nanomaterials. His collaborative spirit is evident through his roles in various scientific associations, where he fosters research and education. With over 100 publications and numerous invited lectures, Professor Han is recognized as a leading figure in his field, inspiring both students and peers alike.

πŸŽ“Profile

πŸ“š Early Academic Pursuits

Professor Sang-Wook Han began his academic journey with a B.S. in Physics from Kyungpook National University in February 1989. His passion for physics led him to the University of Missouri-Columbia, where he earned his Ph.D. in Physics in December 1999. This foundational education equipped him with the necessary knowledge and skills to excel in the field of condensed matter physics and nanoscience.

πŸ’Ό Professional Endeavors

Since August 2003, Professor Han has held the position of Professor in the Department of Physics Education at Jeonbuk National University. His extensive career includes roles as a Research Assistant at the University of Missouri-Columbia, a Research Associate at the University of Washington, and a Postdoctoral Physicist at Lawrence Berkeley National Laboratory. Additionally, he has served as a visiting scholar multiple times at the X-ray Science Division of Argonne National Laboratory, enhancing his expertise in advanced research techniques.

πŸ”¬ Contributions and Research Focus

Professor Han has made significant contributions to the fields of condensed matter physics, nanoscience, and nanotechnology. His research focuses on the microstructural properties of various nanomaterials, including semiconductors, magnetic materials, superconductors, and spintronics. Utilizing techniques such as X-ray Absorption Fine Structure (XAFS) and diffraction methods, he has published over 100 research papers and delivered more than 30 invited lectures, showcasing his influence in the scientific community.

🌍 Impact and Influence

As a leader in the academic community, Professor Han serves as the Chair of the Korean XAFS Society and the Vice-chair of the Korea Proton Acceleration Users Association. His role as a board member of the Korean Synchrotron Radiation User Association highlights his commitment to advancing research and education in the field. He has also contributed to the academic landscape as a guest editor for the International Journal of Nanoscience and Nanotechnology.

πŸ“œ Academic Cites

Throughout his career, Professor Han’s impactful research has been widely cited in the academic community, reinforcing his status as a key contributor in physics and nanotechnology. His work has paved the way for advancements in understanding the properties and applications of various nanomaterials, influencing both academic research and practical applications.

πŸ› οΈ Technical Skills

Professor Han possesses a diverse skill set, including expertise in XAFS and diffraction techniques, MOCVD, and sputtering deposition for crystal growth. His technical proficiency enables him to conduct advanced experiments and contribute valuable insights into the properties of nanomaterials.

πŸ‘©β€πŸ« Teaching Experience

As a dedicated educator, Professor Han has played a vital role in shaping the future of physics education. He has served as the Chair of the Division of Science Education at Jeonbuk National University and has held various leadership positions, including Head of the Physics Education Department. His commitment to teaching is reflected in his ability to inspire and mentor students, fostering a new generation of physicists.

🌟 Legacy and Future Contributions

Professor Han’s legacy lies in his extensive research, influential publications, and dedication to education. His contributions to the fields of condensed matter physics and nanotechnology will continue to resonate within the academic community. Looking ahead, he aims to further explore innovative research avenues and expand his influence in both education and scientific research, ensuring a lasting impact on the discipline.

πŸ“–Publication Top Notes

Interfacial structures of Pt nanoparticles and transition-metal-oxide supports
  • Authors: Eun-Suk Jeong; In-Hui Hwang; Sang-Wook Han
    Publication Year: 2024
    Citations: Not available yet (new publication)
Comparison of Fourier-transformed and Wavelet-transformed EXAFS
  • Authors: Eun-Suk Jeong; Sang-Wook Han
    Publication Year: 2024
    Citations: Not available yet (new publication)
Epitaxial growth of oriented CoO films by radio-frequency sputtering deposition
  • Authors: In-Hui Hwang; Liliana Stan; Cheng-Jun Sun; Sang-Wook Han
    Publication Year: 2023
    Citations: Not available yet (recent publication)
AXEAP: a software package for X-ray emission data analysis using unsupervised machine learning
  • Authors: In-Hui Hwang; Mikhail A. Solovyev; Sang-Wook Han; Maria K. Y. Chan; John P. Hammonds; Steve M. Heald; Shelly D. Kelly; Nicholas Schwarz; Xiaoyi Zhang; Cheng-Jun Sun
    Publication Year: 2022
    Citations: Not available yet (recent publication)
Β Dispersion and stability mechanism of Pt nanoparticles on transition-metal oxides
  • Authors: Eun-Suk Jeong; In-Hui Hwang; Sang-Wook Han
    Publication Year: 2022
    Citations: Not available yet (recent publication)

 

Evangelia Tsampali | Experimental methods | Best Researcher Award

Ms. Evangelia Tsampali | Experimental methods | Best Researcher Award

Researcher at Aristotle University of Thessaloniki, Greece

Evangelia Tsampali is a civil engineer and researcher from Greece, currently pursuing her PhD at the Aristotle University of Thessaloniki. With a robust background in civil engineering and materials science, she specializes in the development of self-healing concrete, aiming to enhance sustainability in construction practices. Fluent in Greek, English, Russian, and Spanish, she has actively contributed to various research projects and international conferences, showcasing her commitment to innovation in the field.

πŸŽ“Profile

🌟 Early Academic Pursuits

Evangelia Tsampali embarked on her academic journey at Aristotle University of Thessaloniki, where she earned a Diploma in Civil Engineering (2007-2013). She pursued two Master’s degrees: one in Physics and Technology of Materials (2014-2015) and another in Environmental Protection and Sustainable Development (2014-2017). Currently, she is a Ph.D. candidate focused on “Self-Healing in Cementitious Materials,” illustrating her commitment to innovative research in civil engineering.

πŸ—οΈ Professional Endeavors

Evangelia has over five years of hands-on research experience. Her work spans various projects, including the utilization of recycled materials in construction and the development of self-healing concrete. She has collaborated with multiple organizations, including a Short Term Scientific Mission at Politecnico di Milano, showcasing her commitment to advancing civil engineering practices.

πŸ”¬ Contributions and Research Focus

Her research primarily focuses on enhancing the properties of cementitious materials through self-healing technologies. She has investigated the impact of crystalline admixtures and alternative materials like perlite and hemp fibers, contributing significantly to sustainable construction methods. Her work is vital for addressing challenges in durability and environmental impact in civil engineering.

πŸ“Š Impact and Influence

Evangelia’s research has garnered attention in the academic community, evidenced by numerous conference presentations and published journal articles. She actively participates in international conferences, sharing insights on innovative materials and techniques, influencing peers and upcoming researchers in the field.

πŸ“š Academic Cites

Her notable publications include articles in the Journal of Building Engineering and Proceedings in Civil Engineering, where she explores the properties and applications of novel materials. Her work has been cited by fellow researchers, emphasizing its relevance and contribution to the field.

βš™οΈ Technical Skills

Evangelia is proficient in a range of technical skills, including AutoCAD, 3D modeling software, and data management. Her expertise in research protocols and laboratory techniques allows her to conduct thorough and innovative investigations in her projects.

πŸ‘©β€πŸ« Teaching Experience

In addition to her research, Evangelia has been involved in educational initiatives, sharing her knowledge of civil engineering materials and sustainable practices with students. Her teaching experience complements her research, fostering a new generation of engineers.

πŸ† Legacy and Future Contributions

Recognized with several awards, including a full scholarship for her Ph.D. studies, Evangelia’s contributions to civil engineering are just beginning. Her focus on sustainable materials and innovative construction techniques positions her to make a lasting impact on the industry, promoting resilience and sustainability in infrastructure development.

πŸ“–Publication Top Notes

Β Assessment of perlite by-product as pozzolanic material in cement pastes
  • Authors: E.C. Tsardaka; E. Tsampali; M. Stefanidou
    Publication Year: 2024
The Contribution of Nano-Alumina to Ultra-High-Performance Cement-Based Systems
  • Authors: Eirini-Chrysanthi Tsardaka; Evangelia Tsampali; Maria Stefanidou
    Publication Year: 2024
Β Effect of hemp fibers and crystalline admixtures on the properties and self-healing efficiency of lime and clay-based mortars
  • Authors: Tsampali Evangelia; Vitta Ioanna; Maria Stefanidou
    Publication Year: 2024
The role of crystalline admixtures in the long-term healing process of fiber-reinforced cementitious composites (FRCC)
  • Authors: Evangelia Tsampali; Maria Stefanidou
    Publication Year: 2022
Β Techniques for recording self‐healing efficiency and characterizing the healing products in cementitious materials
  • Authors: Maria Stefanidou; Evangelia Tsampali; Georgios Karagiannis; Stamatios Amanatiadis; Andreas Ioakim; Spyridon Kassavetis
    Publication Year: 2021

 

Tanmay CHATTOPADHYAY | Experimental methods | Best Researcher Award

Assoc Prof Dr. Tanmay CHATTOPADHYAY | Experimental methods | Best Researcher Award

Associate Professor at Diamond Harbour Women’s University, India

Dr. Tanmay Chattopadhyay is an Associate Professor in the Department of Chemistry at Diamond Harbour Women’s University, West Bengal, India. With over 14 years of teaching and research experience, he has made significant contributions to the fields of bio-inorganic chemistry, coordination chemistry, and nanomaterials. Dr. Chattopadhyay has held various academic positions, including his current role at DHWU and previously at Panchakot Mahavidyalaya. His research expertise has led to multiple patents, and his work has been published extensively in renowned scientific journals. He is an active member of several professional organizations, including the Indian Chemical Society and IACS.

Profile:

Education:

Dr. Chattopadhyay has a robust academic background in chemistry, with a focus on inorganic and coordination chemistry. He completed his Ph.D. in 2008 at the University of Calcutta under the guidance of Professor Debasis Das, where he explored advanced bio-inorganic and coordination chemistry. His academic journey began with a Bachelor of Science from the University of Burdwan in 2001, followed by a Master of Science from Visva-Bharati University in 2003, where he specialized in inorganic chemistry. Dr. Chattopadhyay further enhanced his academic credentials with a postdoctoral fellowship at the National Institute of Advanced Industrial Science and Technology (AIST) in Tsukuba, Japan, under the supervision of Professor Masumi Asakawa. During his postdoctoral research, he developed innovative nanomaterials and catalytic systems, setting the foundation for his future research interests.

Professional experience:

Dr. Chattopadhyay’s professional journey in academia began in 2010 when he joined Panchakot Mahavidyalaya as an Assistant Professor in Chemistry. He held this position until 2019, where he played a crucial role in developing the chemistry curriculum and mentoring undergraduate students. In 2019, he transitioned to Diamond Harbour Women’s University as an Assistant Professor, quickly establishing himself as a key faculty member. His academic leadership was further recognized when he was promoted to Associate Professor in June 2022. Dr. Chattopadhyay’s research experience also includes a postdoctoral fellowship at AIST, Japan, where he worked on cutting-edge nanomaterials and coordination chemistry. His extensive teaching experience, coupled with his contributions to research, makes him a respected figure in the academic community.

Research focus:

Dr. Chattopadhyay’s research primarily focuses on bio-inorganic chemistry, coordination chemistry, and nanomaterials. His work has involved the development of novel catalytic systems using transition metal complexes and nanostructured materials for organic transformations. He has a particular interest in magnetically recoverable nanocatalysts and their applications in sustainable chemical processes, such as alcohol oxidation and nitrophenol reduction. Dr. Chattopadhyay’s research also delves into metalloenzyme mimics, exploring the catalytic potential of Zn(II) and Ni(II) complexes. His research output includes 64 publications in refereed journals, with collaborations both in India and internationally. His dedication to advancing the understanding of catalysis and materials science has established him as a leader in his field.

Awards and Honors:

Dr. Chattopadhyay has received several accolades for his contributions to chemistry. He was awarded a prestigious WB-DST research grant in 2018, worth INR 4 lakh, for his ongoing research. Earlier, he received the SERB-DST Early Career Research grant in 2014, a notable award of INR 24.18 lakh, recognizing his potential as a researcher. Additionally, he secured a UGC research grant of INR 4.95 lakh in 2014, further supporting his work in coordination chemistry and nanomaterials. Dr. Chattopadhyay has also been granted a Japanese patent for his innovative contributions to catalysis. As a member of esteemed professional societies such as the Indian Chemical Society and IACS, his work continues to receive recognition both nationally and internationally.

Publication Top Notes:

  1. Title: Synthesis of copper(ii) complex-functionalized Fe3O4@ISNA (ISNA = isonicotinic acid) as a magnetically recoverable nanomaterial: catalytic studies in alcohol oxidation and nitrophenol reduction, and TD-DFT studies
    Authors: Mondal, R., Chakraborty, A., Zangrando, E., Shukla, M., Chattopadhyay, T.
    Year: 2024
    Citations: 0 πŸ“–
  2. Title: Comparative analysis of Zn(ii)-complexes as model metalloenzymes for mimicking Jack bean urease
    Authors: Ghanta, R., Chowdhury, T., Ghosh, A., Das, A.K., Chattopadhyay, T.
    Year: 2024
    Citations: 2 πŸ“–πŸ“–
  3. Title: Ni(II)-Complex Anchored Over Functionalized Mesoporous SBA-15: A Nanocatalyst for the Synthesis of Aminophenoxazinone Derivatives
    Authors: Ghanta, R., Mondal, R., Chowdhury, T., Chattopadhyay, T., Bhaumik, A.
    Year: 2024
    Citations: 0 πŸ“–
  4. Title: Experimental and theoretical investigation of the catalytic performance of reduced Schiff base and Schiff base iron complexes: Transformation to magnetically retrievable catalyst
    Authors: Mondal, R., Chakraborty, A., Ghanta, R., MenΓ©ndez, M.I., Chattopadhyay, T.
    Year: 2021
    Citations: 11 πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–
  5. Title: Iron Complexes Anchored onto Magnetically Separable Graphene Oxide Sheets: An Excellent Catalyst for the Synthesis of Dihydroquinazoline-Based Compounds
    Authors: Chakraborty, A., Chowdhury, T., Menendez, M.I., Chattopadhyay, T.
    Year: 2020
    Citations: 15 πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–
  6. Title: Triton X-100 functionalized Cu(II) dihydrazone based complex immobilized on Fe3O4@dopa: A highly efficient catalyst for oxidation of alcohols, alkanes, and sulfides and epoxidation of alkenes
    Authors: Chakraborty, T., Mondal, R., Ghanta, R., Chakraborty, A., Chattopadhyay, T.
    Year: 2020
    Citations: 5 πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–
  7. Title: Experimentally formulated and theoretically rationalized alumina immobilized copper catalyst for alcohol oxidation
    Authors: Chowdhury, T., Chatterjee, S., Banerjee, P., Shukla, M., Chattopadhyay, T.
    Year: 2020
    Citations: 3 πŸ“–πŸ“–πŸ“–
  8. Title: Pd(0) immobilized on Fe3O4@AHBA: an efficient magnetically separable heterogeneous nanocatalyst for C–C coupling reactions
    Authors: Chakraborty, T., Sarkar, A., Chattopadhyay, T.
    Year: 2019
    Citations: 8 πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–
  9. Title: Surfactant-mediated solubilization of magnetically separable nanocatalysts for the oxidation of alcohols
    Authors: Chakraborty, A., Chakraborty, T., Menendez, M.I., Chattopadhyay, T.
    Year: 2019
    Citations: 14 πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–
  10. Title: Designing of a magnetically separable Fe3O4@dopa@ML nano-catalyst for multiple organic transformations (epoxidation, reduction, and coupling) in aqueous medium
    Authors: Dasgupta, S., Chatterjee, S., Chattopadhyay, T.
    Year: 2019
    Citations: 8 πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–πŸ“–