Aleksandr Sipatov | Experimental methods | Best Researcher Award

Prof. Aleksandr Sipatov | Experimental methods | Best Researcher Award

Professor at National Technical Univercity “Kharkiv Polytechnic Institute” | Ukraine

Dr. Alexander Yurievich Sipatov is a distinguished Professor in the Metal and Semiconductor Physics Department at the National Technical University “Kharkov Polytechnic Institute” (KPI), Ukraine. Born on March 21, 1957, in Nizhny Novgorod, Russia, Dr. Sipatov has had a long and illustrious career spanning over several decades in the field of semiconductor physics and nanostructures. His work has made notable contributions to the development of quantum effects and the exploration of superconductivity and thermoelectric properties in semiconductor multilayer nanostructures.

👨‍🎓Profile

Google scholar 

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Sipatov’s academic journey began at the National Technical University “Kharkov Polytechnic Institute” (KPI), where he earned his Engineer-Physicist degree in 1980. He pursued postgraduate studies at KPI, completing his Ph.D. in 1986 and later achieving the title of Doctor of Science in 2007. Between 1995 and 1998, Dr. Sipatov was awarded a Postdoctoral stipend to further hone his expertise and research skills. His academic achievements laid the foundation for a highly successful career in semiconductor physics.

Professional Endeavors 💼

Dr. Sipatov’s professional career at KPI began in 1980 as an Engineer, and his role rapidly evolved over the years. He served as a Junior Researcher from 1983 to 1990, a Researcher from 1990 to 1992, and as a Senior Researcher from 1992 to 1995 and 1998 to 2007. His increasing responsibilities and leadership roles included becoming a Leading Researcher from 2007 to 2012 and the Head of the Technical Cryophysics Department at KPI from 2012 to 2020. Since 2020, he has held the position of Professor at KPI, where he continues to contribute significantly to both teaching and research.

Contributions and Research Focus 🔬

Dr. Sipatov’s research focuses on the growth, structure, and electronic, optic, magnetic, and thermoelectric properties of semiconductor multilayer nanostructures, particularly chalcogenides of elements such as lead (Pb), tin (Sn), bismuth (Bi), europium (Eu), and ytterbium (Yb). His studies have led to several groundbreaking discoveries, including:

  1. Energy Spectrum Quantization in thin films, notably in PbS films and PbS-EuS superlattices, identified by shifts in the photoluminescence edge.
  2. Resonant Tunneling phenomena observed through negative differential resistance in PbS-EuS double barrier tunneling structures.
  3. The discovery of superconductivity in IV-VI superlattices, with Tc values between 3-6 K.

Currently, Dr. Sipatov is investigating the thermoelectric and magnetic properties of semiconductor thin films and nanostructures, which have important applications in energy efficiency and advanced electronics.

Impact and Influence 🌍

Dr. Sipatov’s work has had a profound impact on quantum physics and the field of nanostructures. His findings have broadened the understanding of quantum effects in semiconductors, contributing to advances in quantum technologies and low-temperature physics. Furthermore, his contributions to superconductivity have opened up new avenues for research in quantum computing and energy-efficient technologies. The interdisciplinary nature of his work positions him as a key figure in nanoscience, with direct implications for industries ranging from electronics to energy storage.

Academic Cites 📚

Dr. Sipatov is a highly published researcher with more than 60 publications in peer-reviewed journals, showcasing his dedication to advancing scientific knowledge. His work is indexed in Scopus (ID: 7004596183), highlighting his significant influence and recognition in the scientific community. His research continues to be cited by scholars worldwide, cementing his reputation as a thought leader in semiconductor physics and nanotechnology.

Research Skills 🔧

Dr. Sipatov possesses a broad range of specialized research skills, including:

  • Material Synthesis and Growth of semiconductor multilayer nanostructures.
  • Expertise in quantum effects such as energy spectrum quantization and resonant tunneling.
  • Advanced techniques for studying superconductivity and the magnetic properties of semiconductor materials.
  • Deep understanding of thermoelectric phenomena and their practical applications.

His expertise in low-temperature physics and nanoelectronics places him at the cutting edge of research in these fields.

Teaching Experience 📖

As a Professor at KPI, Dr. Sipatov has dedicated a significant portion of his career to teaching and mentoring the next generation of scientists and engineers. His leadership as the Head of the Technical Cryophysics Department between 2012 and 2020 provided an invaluable platform for the development of young researchers in the field of semiconductor physics. Through his courses and research supervision, Dr. Sipatov has influenced countless students, shaping the future of material science and nanotechnology.

Legacy and Future Contributions 🔮

Dr. Sipatov’s research legacy lies in his innovative contributions to the understanding of quantum effects in semiconductor nanostructures and superconductivity. His work on thermoelectric and magnetic properties holds the potential to revolutionize energy-efficient technologies and next-generation electronics. Moving forward, his future contributions are likely to focus on advanced materials for quantum computing and renewable energy solutions, continuing to drive progress in sustainable technologies and nanoscience.

Publications Top Notes

Interdiffusion in chalcogenide semiconductor superlattice nanostructures
  • Authors: A.Y. Sipatov, L.E. Konotopsky, E. Moroz, V.V. Volobuev
    Journal: Solid State Communications
    Year: 2025

Quantum interference phenomena and electron – electron interaction in topological insulator Bi2Se3 thin polycrystalline films
  • Authors: O.I. Rogachova, O. Pavlosiuk, A.V. Meriuts, K.V. Novak, D. Kaczorowski
    Journal: Thin Solid Films
    Year: 2022

Growth mechanism, structure and thermoelectric properties of thermally evaporated Bi2(Te0.9 Se01)3 thin films
  • Authors: O.I. Rogachova, S. Kryvonohov, A.G. Fedorov, O.N. Nashchekina, K.V. Novak
    Journal: Functional Materials
    Year: 2022

Effect of aging on thermoelectric properties of the Bi2Te3 polycrystals and thin films
  • Authors: O.I. Rogachova, K.V. Novak, A.N. Doroshenko, T.I. Khramova, S.A. Saenko
    Journal: Functional Materials
    Year: 2021

Size effects and thermoelectric properties of Bi0.98Sb0.02 thin films
  • Authors: O.I. Rogachova, K.V. Novak, D.S. Orlova, O.N. Nashchekina, G.V. Lisachuk
    Journal: Journal of Thermoelectricity
    Year: 2020

 

ِAhmed Abdelhady A. Khalil | Experimental methods | Best Researcher Award

ِDr. Ahmed Abdelhady A. Khalil | Experimental methods | Best Researcher Award

Cairo University, National Institute of Laser Enhanced Sciences | Egypt

Ahmed Abd El-Hady Abd El-Moaty Awad, also known by his scientific name Ahmed Abdelhady A. Khalil, is a highly accomplished scholar and researcher in the field of laser systems and non-linear optics. His academic background spans multiple degrees, including a B.S. in Special Physics from Cairo University, an M.Sc. in Laser Systems from the National Institute of Laser Enhanced Sciences (NILES), and a Ph.D. in Laser Systems (2024). His work focuses on materials science, photodetectors, and energy harvesting, particularly within the scope of transition metal dichalcogenides (TMDCs) and photodiodes.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Ahmed’s academic journey began at Cairo University, where he completed his B.S. in Special Physics in 2006 with high honors. This early pursuit laid the foundation for his deep interest in laser science and optics. In 2010, he pursued advanced coursework for a Master’s degree and continued further studies, earning his M.Sc. in Laser Systems in 2016 from NILES, Cairo University. He later completed predoctoral courses in 2021 before obtaining his Ph.D. in 2024, marking a significant milestone in his educational journey.

Professional Endeavors 💼

Ahmed’s professional path has been closely intertwined with teaching and research. Starting as a Teaching Assistant in 2008, he worked his way up to an Assistant Lecturer by 2018, and eventually a Lecturer in 2024 at the Department of Laser Science and Interaction (LSI), NILES. His professional growth highlights his dedication to education and his ability to mentor the next generation of laser scientists. Additionally, he has contributed to the Nanophotonics Research Laboratory at the American University in Cairo under the guidance of Prof. Mohamed A. Swillam.

Contributions and Research Focus 🔬

Ahmed’s research is centered on laser systems, non-linear optics, and materials science, with particular emphasis on energy harvesting and photodetectors. His work on transition metal dichalcogenides (TMDCs) and MoS2-based photodiodes has been groundbreaking, contributing to the development of novel, fast-response photodetectors. Through his research, Ahmed seeks to advance the performance of photodetection systems, enhancing their speed and efficiency for use in modern optical technologies. His publications in international journals showcase his research in high-impact areas, such as his work on SiC/MoS2 composites and GaN/MoS2 photodiodes.

Impact and Influence 🌍

Ahmed’s work has had a significant impact on the scientific community, particularly in the fields of nanophotonics and laser technology. His research on 2D semiconductor dopants and photodiodes is influencing the future of energy-efficient devices and high-speed photodetectors. His collaborations with renowned scientists, particularly through conferences and journal publications, have helped establish him as a prominent researcher in the laser systems community. By integrating cutting-edge materials into photodetectors, his work is laying the foundation for future innovations in quantum computing and photonics.

Research Skills 🧠

Ahmed has demonstrated high-level research skills throughout his career. He is proficient in experimental techniques such as laser fabrication, thin-film deposition, and characterization of optical materials. His expertise extends to numerical simulations and optical design, making him well-versed in the computational aspects of laser systems and non-linear optics. Additionally, his ability to collaborate with interdisciplinary research groups has enhanced his versatility in applying his findings across various domains of physics and engineering.

Teaching Experience 🎓

As an educator, Ahmed has played a pivotal role in shaping the academic careers of many students in the field of laser science. His teaching experience spans over a decade, during which he has taught a wide range of undergraduate and graduate courses in laser systems and non-linear optics. He has also been involved in supervising student research projects, helping students bridge the gap between theoretical knowledge and practical application in laser technology. His commitment to academic excellence and student development is evident in his approach to innovative teaching.

Awards and Honors 🏆

Throughout his career, Ahmed has earned several awards and honors, including recognition for his outstanding research in photonics and laser systems. His publications in high-impact journals and participation in prestigious conferences are a testament to his academic achievements. His ongoing work, particularly in the TMDC photodetector domain, has garnered international attention and positions him as a leading researcher in materials science.

Legacy and Future Contributions 🚀

Ahmed’s future contributions hold the potential to further transform the field of laser systems and photodetectors. As he continues to explore innovative materials and their applications in energy-efficient technologies, his research is likely to lead to breakthrough advancements in optical communication, quantum computing, and energy harvesting. His legacy as an educator and researcher will inspire future generations of scientists and engineers, further solidifying his position as a leading figure in nanophotonics and laser research.

Publications Top Notes

Thin-film photodiode based on novel SiC/MoS2 composite by RF-sputtering for fast response photodetection

  • Authors: AAA Khalil, AM Karmalawi, AA Abdelmageed, FM EL-Sharkawy, E Mousa, …
    Journal: Optical Materials
    Year: 2024

Impact behavior of a novel GaN/MoS2 composite photodiode based thin-film by RF-sputtering for fast response photodetection application

  • Authors: AAA Khalil, AM Karmalawi, AA Abdelmageed, HAS Al-shamiri, E Mousa, …
    Journal: Optical and Quantum Electronics
    Year: 2024

Fast response fabricated MoS2-photodiode based thin film

  • Authors: AAA Khalil, AM Karmalawi, AA Abdelmageed, HAS Al-shamiri, …
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024

Behavior effect of Semiconductor 2D dopants on time response of TMDC-MoS2 based Schottky-photodiode

  • Authors: AAA Khalil, MTH Abou Kana, MA Swillam
    Journal: 2024 Photonics North (PN)
    Year: 2024

 

 

 

Muhammad Ishaq | Experimental methods | Best Researcher Award

Dr. Muhammad Ishaq | Experimental methods | Best Researcher Award

Shenzhen University | China

Muhammad Ishaq, Ph.D. in Semiconductor Physics and Optical Engineering, is an open-minded and adaptable researcher with a profound passion for applied research and teaching. With experience across diverse environments, he has contributed extensively to the field of solar energy technologies, including thin-film solar cells. Currently, he is an academic researcher at Shenzhen University, China. His global perspective has been honed through multiple international collaborations, notably at Huazhong University of Science and Technology and Shenzhen University.

👨‍🎓Profile

Google scholar

Scopus 

ORCID

Early Academic Pursuits 📚

Muhammad Ishaq’s academic journey began with a Bachelor’s degree in Physics from the University of Peshawar (2012), followed by a Master’s degree in Physics from Abdul Wali Khan University, Pakistan (2016), where he focused on Titanium Dioxide Thin Film for Dye-Sensitized Solar Cells. He went on to earn his Ph.D. in Semiconductor Physics/ Optical Engineering from Huazhong University of Science and Technology, China in 2019, where he specialized in Antimony Chalcogenide Flash Evaporation for thin-film solar cell applications.

Professional Endeavors 💼

After completing his Ph.D., Dr. Ishaq furthered his academic journey with a Post-doctoral Fellowship at Shenzhen University, where he specialized in Sb-chalcogenide, CZTS/Se, and Perovskite solar cells. He is currently a Research Associate at Shenzhen University, China, in the College of Physics and Optoelectronic Engineering. His work focuses on solar energy technologies and material science, where he is driving advancements in energy efficiency.

Contributions and Research Focus 🔬

Dr. Ishaq’s research is innovative and multi-disciplinary, with a primary focus on solar energy and semiconductor physics. He is particularly interested in the development of thin-film solar cells using antimony chalcogenides, perovskites, and copper-doped antimony sulfide. His work aims to improve the efficiency and stability of solar cells by optimizing their material properties through various synthesis methods like physical vapor deposition, sol-gel processing, and chemical vapor deposition. Through this, he contributes to addressing the global energy crisis by advancing renewable energy solutions.

Impact and Influence 🌍

Dr. Ishaq has made significant contributions to the field of solar energy through his innovative research and groundbreaking work. His research has not only advanced the understanding of thin-film solar cell applications but also paved the way for creating more sustainable and cost-effective solar technologies. His work has gained recognition through numerous publications, conference presentations, and collaborations with leading experts in semiconductor physics.

Academic Citations 📚

Dr. Ishaq’s research has garnered wide recognition within the scientific community. His publications in high-impact journals like Nano-Micro Letters, Progress in Photovoltaics, and Advanced Functional Materials have earned substantial citations, making a global impact on semiconductor physics and solar energy technologies.

Research Skills 🔧

Dr. Ishaq possesses extensive skills in research techniques including:

  • UV-Vis Spectroscopy
  • Atomic Force Microscopy
  • Scanning Electron Microscopy (SEM)
  • X-ray Diffraction (XRD)
    Additionally, he has vast experience in synthesizing advanced materials using techniques like physical vapor deposition and chemical vapor deposition. His ability to adapt to cutting-edge methods in material science strengthens his contributions to the development of next-generation solar technologies.

Teaching Experience 🍎

Dr. Ishaq has demonstrated a deep commitment to teaching and mentorship in academia. His roles as a lecturer and assistant director have honed his skills in educating and guiding students, particularly in Physics and solar energy applications. His academic guidance has fostered a generation of students prepared to tackle the challenges in applied science.

Awards and Honors 🏆

Dr. Ishaq’s outstanding contributions have been recognized with several awards and scholarships, such as:

  • Top Poster Presenter Award at the International Conference on Next Generation Energy Technologies (2016)
  • Academic Excellence Award and Graduate Honor Award at Huazhong University of Science and Technology (2019)
  • Ph.D. Scholarship from the Chinese Scholarship Council (2016-2019)

Legacy and Future Contributions 🌟

As a dedicated researcher and teacher, Dr. Ishaq’s future contributions are poised to continue impacting the fields of semiconductor physics and solar energy. His research on novel materials for energy applications positions him to make significant strides in sustainable energy solutions, and his commitment to teaching will inspire future generations of scientists and engineers to innovate and contribute to global sustainability.

Publications Top Notes

Introducing atomistic dynamics at van der Waals surfaces for enhancing the thermoelectric performance of layered Bi0.4Sb1.6Te3

  • Authors: Adil Mansoor; Bushra Jabar; Syed Shoaib Ahmad Shah; Muhammad Sufyan Javed; Tayyaba Najam; Muhammad Ishaq; Shuo Chen; Fu Li; Xiao-Lei Shi; Yue-Xing Chen et al.
    Journal: Energy & Environmental Science
    Year: 2025

High-performance flexible Sb₂Se₃ thin-film photodetector for tunable color imaging and wearable physiological monitoring applications

  • Authors: Shuo Chen; Hong-Bo Li; Yi Fu; Guo-Qiang Liu; Muhammad Ishaq; Jun Luo; Jian-Min Li; Bo Che; Jing-Ting Luo; Liming Ding et al.
    Journal: Nano Research
    Year: 2025

Suppressing weak-light voltage attenuation in Sb₂S₃ indoor photovoltaics using Li-doped TiO₂ layer

  • Authors: Kefei Wu; Hui Deng; Xinxin Feng; Jinwei Hong; Guidong Wang; Muhammad Ishaq; Caixia Zhang; Qiao Zheng; Weihuang Wang; Jionghua Wu et al.
    Journal: Nano Research
    Year: 2025

A Deep Dive into Cu₂ZnSnS₄ (CZTS) Solar Cells: A Review of Exploring Roadblocks, Breakthroughs, and Shaping the Future

  • Authors: Shah, Usman Ali; Wang, Ao; Ullah, Muhammad Irfan; Ishaq, Muhammad; Shah, Imtiaz Alam; Zeng, Yiyu; Abbasi, Misbah Sehar; Umair, Muhammad Ali; Farooq, Umar; Liang, Guang-Xing et al.
    Journal: Small
    Year: 2024

A novel Se-diffused selenization strategy to suppress bulk and interfacial defects in Sb₂Se₃ thin film solar cell

  • Authors: He, Haiying; Zhong, Yiming; Zou, Wanying; Zhang, Xinyu; Zhao, Jun; Ishaq, Muhammad; Liang, Guangxing
    Journal: Surfaces and Interfaces
    Year: 2024