Yuhui Wang | Experimental methods | Best Researcher Award

Prof. Yuhui Wang | Experimental methods | Best Researcher Award

Yanshan University | China

Professor Yuhui Wang is a distinguished academic and researcher in the field of Materials Science and Mechanical Engineering, currently serving as a Professor at the School of Mechanical Engineering, Yanshan University (YSU), China. With over two decades of research and academic experience, Professor Wang has made significant strides in understanding and innovating material microstructures for advanced industrial applications.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Professor Wang embarked on his academic journey at Yanshan University, where he earned his Bachelor of Engineering in 2003, followed by a Master’s degree in 2006, and culminated in a PhD in 2012, all in Materials Science and Engineering. His solid academic foundation laid the groundwork for his lifelong pursuit of excellence in metallurgical research and materials design.

🧑‍🔬 Professional Endeavors

Professor Yuhui Wang has demonstrated a consistent trajectory of professional growth through pivotal roles in both academic and research domains. Currently a Professor (2020–Present) at the School of Mechanical Engineering, YSU, he previously served as a Senior Researcher (2012–2019) at the National Engineering Research Center for Equipment and Technology of C.S.R., YSU, and as a Research Associate (2006–2010) at the School of Materials Science and Engineering, YSU. These positions have established him as a leader in academic research, fostering industry collaboration and integrating theoretical innovation with practical engineering applications.

🔬 Contributions and Research Focus

Professor Wang’s research is centered on the microstructure-processing-property relationships in metallic materials, aiming to design advanced materials through microstructural engineering. Since 2021, he has led pioneering work in a novel deformation method titled “Dynamic Offsets and Shear Force Adjustment Rolling (DS Rolling)”. This technique has shown promising results in grain refinement and texture homogenization in pure metals like copper (Cu) and tantalum (Ta). He employs state-of-the-art experimental techniques such as electron microscopy and X-ray diffraction, underscoring his technical expertise and commitment to methodological rigor.

🌍 Impact and Influence

With 110 published papers, including 1 Hot Paper and 2 Highly Cited Papers, Professor Wang has made an undeniable impact on the field. His work has garnered 1,860 citations, reflecting strong academic reception and influence. His H-index of 21 confirms both the quality and consistency of his research contributions over time. Moreover, he holds 40 authorized patents, including 1 U.S. patent, a testament to the practical relevance and innovation of his work in both academic and industrial settings.

📚 Academic Cites

His research outputs have appeared in top-tier journals, with frequent citations reflecting his status as a reliable source of scientific knowledge. The presence of Highly Cited Papers signifies that his work is used as a foundation for ongoing research, showcasing his role in advancing scientific frontiers.

🛠️ Research Skills

Professor Wang is recognized for his exceptional skills in experimental design, data analysis, and advanced characterization techniques. His ability to translate microstructural insights into functional engineering solutions marks him as a leading innovator in material processing. His recent focus on DS Rolling exemplifies a forward-looking research mindset, integrating novel mechanical deformation methods with practical application potential.

👨‍🏫 Teaching Experience

Professor Wang has an extensive teaching and supervision portfolio. He is currently supervising 5 PhD students, 1 postdoctoral fellow, and 9 master’s students, while having mentored 2 PhD and 10 master’s graduates in the past. His role as a mentor and educator is deeply valued, and he consistently inspires young scholars to engage with cutting-edge materials research.

🌟 Legacy and Future Contributions

Professor Yuhui Wang’s legacy is built on a foundation of scientific excellence, innovation, and mentorship. His visionary research in material processing techniques like DS Rolling, combined with his strong academic influence, ensures that he will continue to shape the next generation of materials science. His ongoing work promises advancements in sustainable materials development, industrial processing techniques, and deeper insights into the structure-property-performance nexus in metals.

Top Noted Publications

Pure copper plate achieving high synergetic strength and electrical conductivity via a novel dynamic offsets and shear force adjustment cryorolling

  • Authors: Longfei Xu, Renhao Wu, Haiming Zhang, Xin Xue, Yan Peng, Yuhui Wang, Hyoung Seop Kim
    Journal: Materials Science and Engineering: A
    Year: 2025

The improvement and verification of fluid dynamics simulation on temperature uniformity during heat treatment of ring pieces

  • Authors: Mingzhe Xu, Jinfu Zhao, Li Wang, Tengxiang Zhao, Ling Kong, Zhipeng Li, Zhixin Huang, Yuhui Wang
    Journal: Heliyon
    Year: 2024

Microstructure and mechanical properties of pure copper plate processed by novel dynamic offsets and shear force adjustment rolling

  • Authors: Longfei Xu, Kai Yu, Li Wang, Shizhao Quan, Ling Kong, Haokun Yang, Xiaodan Zhang, Yan Peng, Yuhui Wang
    Journal: Journal of Materials Research and Technology
    Year: 2024

Cryogenic toughness in a low-cost austenitic steel

  • Authors: Y. Wang, Y. Zhang, A. Godfrey, J. Kang, Y. Peng, T. Wang, N. Hansen, X. Huang
    Journal: Communications Materials
    Year: 2021

Hot-Deformation Behavior and Processing Maps of a Low-Carbon Fe-2 wt% Nb Steel

  • Authors: Wentao Luo, Pengzhan Cai, Ziyong Hou, Yuhui Wang, Ling Zhang, G.L. Wu
    Journal: Metals
    Year: 2021

Achieving high ductility in the 1.7 GPa grade CoCrFeMnNi high-entropy alloy at 77 K

  • Authors: S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, Z.F. Zhang
    Journal: Materials Science and Engineering: A
    Year: 2019