Kun Xiao | Data Analysis Techniques | Best Researcher Award

Prof. Kun Xiao | Data Analysis Techniques | Best Researcher Award

Professor at East China University of Technology | China

Professor Xiao Kun is a distinguished academic and researcher at the East China University of Technology, affiliated with the School of Geophysics and Measurement-Control Technology. With a career dedicated to advancing geophysical exploration, especially in unconventional energy resources and machine learning applications, Professor Xiao has earned national acclaim as a young scientific and technological talent and leading academic figure in Jiangxi Province. His professional journey is marked by innovation, academic leadership, and technical excellence, making him a significant contributor to China’s scientific community.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Professor Xiao embarked on his academic path at the China University of Geosciences (Beijing), where he majored in Geodetection and Information Technology. He completed his Ph.D. in Engineering in July 2015, laying a strong foundation in geophysics. His doctoral work focused on gas hydrate reservoir simulation and geophysical logging, an area he would continue to specialize in throughout his career.

👨‍🏫 Professional Endeavors

Since 2015, Professor Xiao has been affiliated with the East China University of Technology, progressing through the ranks from Lecturer to Associate Professor, and most recently to Professor in 2024. His work encompasses both teaching and advanced scientific research in geophysical exploration, with a strong focus on field experiments, numerical simulations, and interdisciplinary applications.

🔬 Contributions and Research Focus

Professor Xiao Kun’s core research centers on geophysical theory and method development, with a strong emphasis on the exploration of unconventional energy resources such as gas hydrates, coalbed methane (CBM), and shale gas. He specializes in applying machine learning techniques to geophysical logging and lithology identification, as well as conducting petrophysical property analysis and numerical simulations of complex reservoirs. He has successfully led over 20 major research projects funded by esteemed institutions including national key programs and provincial science foundations.

🌍 Impact and Influence

Professor Xiao Kun is a recognized thought leader in China’s geophysical research community, actively contributing as a communication review expert for prestigious institutions such as the Changjiang Scholars Program and the National Natural Science Foundation of China (NSFC). He also supports several provincial science and technology panels, reinforcing his role in shaping research directions. His expertise has had a significant impact on energy exploration policies, geophysical education, and the development of research strategies across various regions in China.

📚 Academic Citations and Publications

Professor Xiao has published over 60 academic papers, with more than 30 indexed by SCI/EI, spanning leading journals such as Geophysics, Acta Geophysica, Journal of Geophysics and Engineering, and Scientific Reports. His work has been cited across various scientific domains, highlighting his interdisciplinary impact in applied geophysics and data-driven modeling.

He has also authored one academic monograph, solidifying his contributions in the form of scholarly literature, and secured six national invention patents and six software copyrights.

🧠 Research Skills and Technical Expertise

Professor Xiao Kun possesses exceptional technical expertise in numerical modeling, reservoir simulation, and well-logging analysis, with a strong command of machine learning algorithms such as ensemble learning and extreme learning machines. His proficiency in multiphysics data integration and high-performance scientific computing empowers him to tackle complex subsurface challenges. These advanced skills allow him to develop innovative solutions in geophysical exploration, significantly contributing to energy sustainability research and the evolution of data-driven geoscience methodologies.

👨‍🏫 Teaching Experience

In addition to his research, Professor Xiao has over 9 years of teaching experience in undergraduate and postgraduate programs, mentoring students in geophysical methods, logging technologies, and scientific computing. He has also guided students to win three national competition awards, showing his dedication to academic mentorship and talent cultivation.

🏅 Awards and Honors

Professor Xiao Kun has received numerous prestigious accolades that highlight his national recognition and academic leadership. He was honored as a “Young Scientific and Technological Talent” by the Ministry of Natural Resources in 2023 and named a finalist for the “National Good Youth with Positive Energy” in 2022. As a Leading Academic Leader in Jiangxi Province, he also serves on editorial boards of top journals and is an active member of key scientific committees, demonstrating his broad influence in geophysical research and governance.

🚀 Legacy and Future Contributions

Professor Xiao Kun is poised to shape the next generation of geophysical research in China and beyond. His pioneering integration of AI-driven methodologies with traditional geophysical exploration techniques signifies a transformative advancement in the field. Looking ahead, his research is expected to play a vital role in areas such as green energy resource evaluation, AI-geoscience fusion, and data-driven decision-making in complex subsurface environments. With a strong foundation in both applied research and academic mentorship, Professor Xiao is committed to driving innovation, strengthening international research collaboration, and advancing the frontiers of scientific excellence in geophysics.

Top Noted Publications

Study on logging identification of sandstone-type uranium deposits based on ensemble learning in the Songliao Basin in Northeast China

  • Authors: Kun Xiao, Yichen Xu, Yaxin Yang, et al.
    Journal: Nuclear Science and Engineering
    Year: 2025

Numerical simulation of resistivity and saturation estimation of pore-type gas hydrate reservoirs in the permafrost region of the Qilian Mountains

  • Authors: Xudong Hu, Changchun Zou, Zhen Qin, Hai Yuan, Guo Song, Kun Xiao (Corresponding author)
    Journal: Journal of Geophysics and Engineering
    Year: 2024

Research progress on lithologic logging evaluation of uranium ore layers based on machine learning

  • Authors: Kun Xiao, Changwei Jiao, Yaxin Yang, et al.
    Journal: Science Technology and Engineering
    Year: 2025

Experimental study of relationship among acoustic wave, resistivity and fluid saturation in coalbed methane reservoir

  • Authors: Kun Xiao, Zhongyi Duan, Yaxin Yang, et al.
    Journal: Acta Geophysica
    Year: 2023

Automatic lithology identification of sandstone-type uranium deposit in Songliao Basin based on ensemble learning

  • Authors: Zhongyi Duan, Kun Xiao, Yaxin Yang, et al.
    Journal: Atomic Energy Science and Technology
    Year: 2023

 

Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Prof. Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Professor at National Taiwan Ocean University | Taiwan

Dr. Sheng Hsiung Chang is a Professor at the National Taiwan Ocean University. His extensive career in academia and research is marked by significant roles in leading institutions such as Chung Yuan Christian University (CYCU) and National Central University. Dr. Chang’s work has spanned across several pivotal research areas, particularly in semiconductor physics, optical physics, and perovskite optoelectronic devices. His achievements not only demonstrate his technical expertise but also highlight his commitment to academic leadership, mentorship, and advancing scientific knowledge.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Chang’s academic journey began with his postdoctoral research roles, first at Academia Sinica (2008-2010) and later at National Central University (2010-2012), where he gained foundational experience in semiconductor and optical physics. During these early years, he developed a strong interest in light-material interactions and functional thin films, fields that would shape his future research directions. His foundational work in nanotechnology and optoelectronics established the groundwork for his later academic and research career.

Professional Endeavors 🌍

Dr. Chang has held pivotal roles in academia, including Associate Professor and Professor at CYCU, where he also served as the Director of the Career Service Center (2020-2021). These positions reflect his commitment to fostering both the research and professional development of students. Additionally, he has contributed to the scientific community as an Editorial Board Member for journals such as Nanotechnology and Physics Bimonthly.

He has also demonstrated leadership in academic societies, serving as Vice Chairman (2021-2024) and Secretary General (2019-2020) of the Taiwan Vacuum Society. This involvement shows his dedication not only to research but also to promoting collaboration and innovation within the scientific community.

Contributions and Research Focus 🔬

Dr. Chang’s research is centered around perovskite optoelectronic devices, light-material interactions, plasmonic devices, nonlinear optics, and functional thin films. He is currently the Principal Investigator for various research projects funded by the National Science and Technology Council (NSTC) and the Ministry of Science and Technology (MOST). His groundbreaking work on perovskite thin films and their applications in photovoltaic cells is pushing the boundaries of renewable energy technologies. Through projects that explore optical coupling, material interfaces, and energy harvesting, Dr. Chang’s research is expected to revolutionize the optoelectronics field.

Impact and Influence 🌍

Dr. Chang’s contributions to the scientific community have had far-reaching implications, particularly in the area of perovskite solar cells. His work on improving photovoltaic performance and investigating interfacial contacts between organic and inorganic materials has the potential to enhance solar cell efficiency and sustainability. He is a key player in advancing technologies related to energy conversion, helping to foster sustainable solutions to global energy challenges. His leadership roles in academic societies have also expanded his influence and outreach in the scientific community.

Academic Citations 📈

Dr. Chang has an impressive publication record, with recent articles in high-impact journals such as Nanotechnology, Synthetic Metals, and Materials Science in Semiconductor Processing. His work is frequently cited by fellow researchers in the field of optoelectronics, particularly his studies on perovskite materials and their optical properties. These citations underscore the significance and influence of his research in both academia and industry.

Research Skills 🧑‍🔬

Dr. Chang possesses an extensive skill set in semiconductor physics, optical physics experiments, and theoretical computations. His research involves complex techniques such as material synthesis, thin film fabrication, and optical characterization. He has a deep understanding of light-matter interactions and their application to next-generation devices like solar cells and plasmonic devices. Additionally, his ability to bridge experimental techniques with theoretical models allows him to tackle complex challenges in material design and optoelectronic applications.

Teaching Experience 🏫

In his roles as a Professor and Associate Professor, Dr. Chang has mentored numerous graduate and postgraduate students in their research pursuits. His teaching approach is centered around encouraging critical thinking, innovation, and hands-on experimentation. His experience in guiding students and fostering academic growth aligns with his belief in the importance of collaboration and mentorship within academic settings. He also plays an active role in career development, helping students transition into the professional world with a strong foundation in research and industry-related skills.

Awards and Honors 🏆

Throughout his career, Dr. Chang has been the recipient of several prestigious awards and honors, recognizing his contributions to the fields of optical physics, semiconductor research, and perovskite optoelectronics. His ongoing recognition as a leader in nanotechnology and materials science reflects his consistent pursuit of excellence in both academic research and scientific innovation.

Legacy and Future Contributions 🔮

Dr. Chang’s work is poised to leave a lasting impact on the scientific community, particularly in the field of renewable energy and optoelectronics. As the principal investigator of major research projects, he is advancing the efficiency and sustainability of perovskite-based technologies, paving the way for affordable and efficient solar energy solutions. Dr. Chang’s future contributions to nanomaterials and functional thin films will likely continue to inspire scientific innovation, technological advancements, and environmental sustainability for years to come.

Publications Top Notes

Long room-temperature valley lifetimes of localized excitons in MoS2 quantum dots

  • Authors: H. Wang, Y. Chen, T.Y. Pan, Y. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Structural and excitonic properties of the polycrystalline FAPbI3 thin films, and their photovoltaic responses

  • Authors: Y. Huang, I.J. Yen, C. Tseng, A. Chandel, S.H. Chang
    Journal: Nanotechnology
    Year: 2024

Observations of two-dimensional electron gases in AlGaN/GaN high-electron-mobility transistors using up-converted photoluminescence excitation

  • Authors: Y. Chen, L. Chen, C.B. Wu, Y.J. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Efficient Optical Coupling between Dielectric Strip Waveguides and a Plasmonic Trench Waveguide

  • Authors: J. Wu, A. Chandel, C. Chuang, S.H. Chang
    Journal: Photonics
    Year: 2024

Enhancing the photovoltaic responses of MAPbI3 poly-crystalline perovskite films via adjusting the properties of PEDOT:PSS hole transport material with a low-polarity solvent treatment process

  • Authors: C. Tsai, S.N. Manjunatha, M. Sharma, L.B. Chang, C. Chang
    Journal: Materials Science in Semiconductor Processing
    Year: 2024

 

Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Mrs. Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Research Scholar at National Institute of Technology Warangal | India

Ramadevi Suguru Pathinti is currently pursuing her Ph.D. in Physics at the National Institute of Technology, Warangal, India, specializing in Materials Science with a focus on soft matter research. Her academic journey spans from her M.Sc. in Physics to her ongoing doctoral studies. Ramadevi has made significant contributions in the field of nanomaterials and smart materials, particularly in integrating liquid crystals with metal oxides for the development of advanced gas sensors and UV photodetectors.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Ramadevi’s academic journey began at Rayalaseema University, Kurnool, India, where she pursued her M.Sc. in Physics with a specialization in Electronics, securing a CGPA of 9.1/10. She also holds a B.Sc. in Mathematics, Physics, and Computer Science. Her strong academic foundation laid the groundwork for her pioneering research in Materials Science during her doctoral studies at NIT, Warangal.

Professional Endeavors 💼

In her professional journey, Ramadevi has excelled in scientific research within both academic and industrial contexts. She has contributed to the development of thin film devices for smart window technologies, gas sensors, and photodetectors. Her Ph.D. research focuses on integrating liquid crystal-functionalized metal oxides to enhance the optical properties and responsivity of sensors, enabling advancements in environmental sensing and optoelectronic devices.

Contributions and Research Focus 🔬

Ramadevi’s research is centered on the synthesis of nanomaterials and their integration into innovative smart materials. She has worked extensively on fabricating gas sensors and UV photodetectors using liquid crystal-metal oxide hybrids. Notably, her work on smart windows is groundbreaking, where she has discovered novel optical switching behaviors and light modulation techniques, paving the way for energy-saving technologies. Furthermore, her synthesis methods like sol-gel and hydrothermal techniques have contributed to enhanced material properties for sensing applications.

Impact and Influence 🌍

Her research has already made a considerable impact in the fields of environmental sensing and smart material development, particularly in the energy-efficient technologies sector. Ramadevi’s work has the potential to revolutionize how we detect gases, modulate light, and develop self-powered sensors, with applications ranging from smart windows to sensitive environmental monitoring systems. Through her research, she aims to bring forth sustainable technologies that are adaptable to changing global needs.

Academic Cites 📚

Ramadevi has authored several impactful publications in top-tier peer-reviewed journals, contributing to the fields of materials science and optoelectronics. Her articles in journals like the Journal of Molecular Liquids, Journal of Alloys and Compounds, and Advanced Material Technology have contributed to the scientific community’s understanding of the integration of nanomaterials and liquid crystals for innovative devices. She has also presented her research at national and international conferences, further strengthening her academic profile.

Research Skills 🛠

Ramadevi has developed extensive technical expertise in nanomaterial synthesis using methods like sol-gel and hydrothermal techniques. She is proficient in device fabrication, particularly thin film devices for gas sensing and UV photodetector applications. Additionally, she has hands-on experience with advanced research instruments, including optical polarizing microscopes, fluorescence microscopes, and spin coating systems, which enhance her ability to conduct high-quality research and device development.

Teaching Experience 📚

In addition to her research, Ramadevi has taught practical sessions for both M.Sc. (Tech) Physics and B.Tech students. She has handled laboratory work, where she imparted valuable knowledge on experimental techniques and device characterization to budding scientists. This experience has helped her develop strong interpersonal and communication skills, which are essential for future academic and industrial collaborations.

Awards and Honors 🏆

Ramadevi’s excellence has been acknowledged through the Joint CSIR-UGC National Eligibility Test (NET) for Junior Research Fellowship (JRF) in 2017, where she secured an impressive All India Rank of 57. This achievement is a testament to her academic aptitude and research potential.

Legacy and Future Contributions 🌟

Looking forward, Ramadevi aims to make lasting contributions to the field of materials science and nanotechnology. Her research is poised to drive innovations in smart materials, sustainable technologies, and energy-efficient devices, with far-reaching implications for environmental sensing, smart window technologies, and optoelectronics. With her interdisciplinary approach and collaborative nature, she is well-positioned to make significant advancements in both academic and industrial research.

Publications Top Notes

Label-free detection of Aβ-42: a liquid crystal droplet approach for Alzheimer’s disease diagnosis

  • Authors: Saumya Ranjan Pradhan, Ramadevi Suguru Pathinti, Ramesh Kandimalla, Krishnakanth Chithari, Madhava Rao Veeramalla N., Jayalakshmi Vallamkondu
    Journal: RSC Advances
    Year: 2024

Enhanced ethanol gas detection using TiO2 nanorods dispersed in cholesteric liquid crystal: Synthesis, characterization, and sensing performance

  • Authors: Ramadevi Suguru Pathinti, Sunil Gavaskar Dasari, Buchaiah Gollapelli, Sreedevi Gogula, Ramana Reddy M.V., Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2024

Enhanced security through dye-doped cholesteric liquid crystal shells for anti-counterfeiting

  • Authors: Chris Mathew, Ramadevi Suguru Pathinti, Saumya Ranjan Pradhan, Buchaiah Gollapelli, Krishnakanth Chithari, Mrittika Ghosh, Ashok Nandam, Jayalakshmi Vallamkondu
    Journal: Optical Materials
    Year: 2024

ZnO nanoparticles dispersed cholesteric liquid crystal based smart window for energy saving application

  • Authors: Ramadevi Suguru Pathinti, Arun Kumar Tatipamula, Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2023

Energy saving, transparency changing thermochromism in dye-doped cholesteric liquid crystals for smart windows

  • Authors: Ramadevi Suguru Pathinti, Buchaiah Gollapelli, Saumya Ranjan Pradhan, Jayalakshmi Vallamkondu
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2023

 

Jianwen Yang | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Jianwen Yang | Experimental methods | Best Researcher Award

Associate Professor, Master’s Supervisor, Deputy Head of the Physics Department at Shanghai Normal University | China

Dr. Jianwen Yang is an Associate Professor at Shanghai Normal University, holding a Ph.D. in Physical Electronics from Fudan University. His primary research focus lies in oxide semiconductors and information display technologies. With significant experience in addressing instability issues in industrial devices, he has contributed to analyzing the performance of a-IGZO TFTs in companies like TSMC and AUOtronics. His innovative work in n-type tin oxide-based TFTs and indium-free doped tin oxide-based TFTs has led to breakthroughs in the field, providing devices with superior electrical characteristics.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Yang’s academic journey began with a solid foundation in Physical Electronics, completing his Ph.D. at Fudan University. During his early studies, he developed a keen interest in the intersection of material science and electronics, which led him to explore oxide thin-film transistors (TFTs) as a promising avenue for future advancements. His focus on new materials and material simplification laid the groundwork for his later innovations in tin oxide-based TFTs, a critical area in the development of modern information display technologies.

Professional Endeavors 💼

Dr. Yang’s professional career has been marked by collaborations with prominent industry leaders like TSMC and AUOtronics, where he contributed to solving the instability challenges in industrialized a-IGZO TFTs. These efforts have provided valuable insights into the performance optimization of thin-film transistors, further driving the industry forward. His participation in national projects, such as those funded by the National Natural Science Foundation of China (NSFC), also highlights his commitment to advancing the field through both academic research and real-world applications.

Contributions and Research Focus 🔬

Dr. Yang’s pioneering research in n-type tin oxide-based TFTs led to the introduction of novel indium-free doped tin oxide materials like SnWO, SnSiO, and SnNiO, which have all exhibited superior electrical characteristics. His work on comparing top/bottom-gate a-IGZO TFTs under varying stress conditions provided valuable insights into threshold voltage shifts and carrier concentration variations, significantly impacting the design and stability of oxide semiconductors in practical applications. He has consistently pushed the boundaries of material research, particularly in the flexible electronics sector.

Impact and Influence 🌍

Dr. Yang’s groundbreaking research has had a profound impact on the development of oxide semiconductor devices, particularly in TFT technology. His innovative approaches have been cited in multiple review articles, and his work continues to influence both academic researchers and industry practitioners. His research on indium-free tin oxide-based TFTs has not only enriched academic literature but also paved the way for more sustainable and efficient solutions in the information display industry. The superior electrical characteristics of his materials have positioned them as viable alternatives to traditional indium-based materials, which are costly and scarce.

Academic Cites 📈

Dr. Yang has published over 38 journals in top-tier scientific databases, including SCI and Scopus, with his work receiving 11 citations. His innovative research has been referenced in numerous review articles, further establishing him as a thought leader in his field. These citations reflect the widespread recognition of his research’s significance, and his publications continue to influence the academic community’s understanding of oxide semiconductors and TFT stability.

Research Skills 🛠️

Dr. Yang’s research skills span a wide range of disciplines, from material science to electronic device engineering. His expertise in thin-film transistor design, instability analysis, and new material development has allowed him to push the envelope in semiconductor research. He is particularly skilled in analyzing the electrical performance of TFTs under various stress conditions, demonstrating an acute understanding of the intricate relationship between material properties and device functionality. Additionally, his work in flexible electronics is a testament to his ability to innovate in emerging areas.

Teaching Experience 👩‍🏫

As an Associate Professor at Shanghai Normal University, Dr. Yang has been involved in educating and mentoring the next generation of scientists and engineers. He brings his extensive research experience into the classroom, enriching students’ learning experiences. Dr. Yang’s teaching focuses on semiconductor physics, material science, and electronics. His dedication to student development is evident in his guidance of graduate students and the collaborative environment he fosters for academic exploration.

Awards and Honors 🏅

Dr. Yang’s contributions have been recognized by several prestigious national research organizations, including the National Natural Science Foundation of China. His research projects, such as the Study on the Instability of Flexible Amorphous SnSiO Thin Film Transistors, have earned him respect in the academic community and have helped elevate Shanghai Normal University‘s status in the field of electronic materials research.

Legacy and Future Contributions 🔮

Dr. Yang’s research legacy lies in his innovative contributions to oxide semiconductor technology and his dedication to finding sustainable solutions for the electronics industry. His ongoing research projects, including his work on the 345GHz Submillimeter Wave Sideband Separation Receiver for LCT Telescope, show his commitment to exploring cutting-edge technologies. Moving forward, Dr. Yang plans to continue refining indium-free tin oxide-based TFTs and explore their industrial scalability. His work has the potential to impact a variety of industries, from flexible displays to advanced sensors, shaping the future of electronic materials.

Publications Top Notes

Exploring soil-buoyancy interactions: experimental designs and educational implications for enhancing students’ scientific inquiry skills

  • Authors: Zijian Gu, Jianwen Yang
    Journal: Physics Education
    Year: 2025

Fast-response IWO/Si heterojunction photodetectors

  • Authors: Xiaochuang Dai, Jianwen Yang, Huishan Wang, Yunxi Luo, Jinying Zeng, Wangzhou Shi, Feng Liu
    Journal: Journal of Physics D: Applied Physics
    Year: 2025

Enhancement of electrical characteristics of SnGaO thin-film transistors via argon and oxygen plasma treatment

  • Authors: Yinli Lu, Xiaochuang Dai, Jianwen Yang, Ying Liu, Duo Cao, Fangting Lin, Feng Liu
    Journal: Vacuum
    Year: 2024

Preparation of chalcogenide perovskite SrHfS3 and luminescent SrHfS3:Eu2+ thin films

  • Authors: Yanbing Han, Jiao Fang, Yurun Liang, Han Gao, Jianwen Yang, Xu Chen, Yifang Yuan, Zhifeng Shi
    Journal: Applied Physics Letters
    Year: 2024

Degradation Behavior of Etch-Stopper-Layer Structured a-InGaZnO Thin-Film Transistors Under Hot-Carrier Stress and Illumination

  • Authors: Dong Lin, Wan-Ching Su, Ting-Chang Chang, Hong-Chih Chen, Yu-Fa Tu, Kuan-Ju Zhou, Yang-Hao Hung, Jianwen Yang, I-Nien Lu, Tsung-Ming Tsai et al.
    Journal: IEEE Transactions on Electron Devices
    Year: 2021

 

 

Sanjiv Kane | Experimental methods | Best Innovation Award

Mr. Sanjiv Kane | Experimental methods | Best Innovation Award

Scientific Officer at Raja Ramanna Centre for Advanced Technology | India

A Distinguished Scientific Officer in Applied Physics and Synchrotron Radiation

Sanjiv R. Kane is an experienced Scientific Officer with over 25 years of expertise in applied physics, particularly in synchrotron radiation and advanced instrumentation. He is currently pursuing a Ph.D. in Applied Physics at the Maharaja Sayajirao University of Baroda (2023–Present), focusing on advancing the fields of control systems, data acquisition software, and beamline technology. His proven experience spans across several prominent research facilities, including the Indus Synchrotron Facility and CERN, where he has contributed immensely to both research and technology development.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Sanjiv started his academic journey by earning a Bachelor of Science in Physics with minors in Mathematics and Statistics from the University of Poona (1984–1987). He further pursued his Master of Science in Applied Physics at the University of Poona (1987–1989), where he laid the foundation for his extensive career in applied physics and instrumentation design.

💼 Professional Endeavors

 Since June 1999, Sanjiv has served as a Scientific Officer at the Indus Synchrotron Facility, Raja Ramanna Centre for Advanced Technology, Indore, India, where he has worked on numerous high-profile projects. His notable contributions include the development of VME-based control systems, PLC safety interlocks, and the automation of beamline operations. His efforts in designing and deploying data acquisition systems using National Instruments LabVIEW® have been crucial in advancing the synchrotron facility’s capabilities. Additionally, he has been instrumental in designing FPGA-based DAQ systems and PXI system deployments for beamline control.

🔬 Contributions and Research Focus

Sanjiv’s research is centered on synchrotron radiation, particularly in the design and development of control systems for X-ray beamlines and instrumentation. His work on extended X-ray absorption fine structure (EXAFS), soft X-ray reflectivity, and nonlinear behavior of piezoceramic actuators has gained significant attention in the field. He has co-authored several important publications, contributing to the advancement of both material characterization and synchrotron beamline technology.

🌍 Impact and Influence

 Sanjiv’s contributions have made a significant impact on synchrotron radiation research, particularly in beamline automation and data acquisition systems. His international collaborations at CERN and Indus Synchrotron Facility have helped improve the performance of synchrotron radiation facilities, making them more efficient and accessible to researchers worldwide. His papers and conference presentations continue to influence the direction of research in synchrotron instrumentation and applied physics.

📚 Academic Cites

Sanjiv’s work has been widely cited in notable academic journals and has been presented at prestigious international conferences. His publications in journals such as Nuclear Instruments and Methods in Physics Research, Rev. Sci. Instrum., and Mechanics of Advanced Materials and Structures have contributed significantly to the development of synchrotron radiation technologies. Notable works include:

  1. “Extended X-ray Absorption Fine Structure (EXAFS) measurement of Cu metal foil using thermal wave detector: A comparative study.”
  2. “A versatile beamline for soft x-ray reflectivity, absorption, and fluorescence measurements at Indus-2 synchrotron source.”
  3. “Electric field-induced nonlinear behavior of lead zirconate titanate piezoceramic actuators in bending mode.”

🔧 Research Skills

Sanjiv’s technical expertise spans several areas including:

  • Instrumentation & Control: VME systems, PLC programming (Siemens Step 7), microcontroller-based systems (ARM, 8051).
  • Programming Languages: Proficient in LabVIEW®, C/C++, Python, Visual Basic, and VEEPRO.
  • Design & Simulation: Expertise in Altium Designer, Protel, ISE (FPGA design), NI Multisim, and Electronic Workbench.
  • Data Acquisition & Analysis: In-depth experience in developing FPGA-based DAQ systems, PXI systems, and database management using Microsoft Access.

👨‍🏫 Teaching Experience

Sanjiv has extensive experience in training and mentoring junior researchers and scientists in the areas of control systems and instrumentation for synchrotron radiation. His involvement in numerous workshops, symposia, and conferences allows him to share his expertise with others in the field.

🌱 Legacy and Future Contributions

Sanjiv’s legacy lies in his contributions to synchrotron radiation research, particularly in improving beamline automation and X-ray measurement systems. As he continues his Ph.D. journey, his future contributions will likely focus on advanced control systems and enhancements to synchrotron facilities. His ongoing work promises to make lasting improvements in the development of synchrotron instrumentation that will support the scientific community in material science, biotechnology, and physics research.

Publications Top Notes

Characterizing Pyroelectric Detectors for Quantitative Synchrotron Radiation Measurements

  • Authors: SR Kane, RW Whatmore, MN Singh, S Satapathy, PK Jha, PK Mehta
    Journal: Sensors and Actuators A: Physical
    Year: 2025

Development of Piezo-actuated X-ray Deformable Mirror for Vertical Focusing of Synchrotron Radiation at Indus-2

  • Authors: HSK Jha, AK Biswas, MK Swami, A Sagdeo, C Mukherjee, SR Kane, …
    Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators
    Year: 2024

Green Protocol For Synthesis of Cu2O@g‐C3N4 Photocatalysts For 1, 4 Radical Oxidative Addition of Trans Crotonaldehyde Under Visible Light Condition

  • Authors: BA Maru, VJ Rao, S Kane, UK Goutam, CK Modi
    Journal: ChemPhotoChem
    Year: 2024

Development and Initial Results of X-ray Magnetic Circular Dichroism Beamline at Indus-2 Synchrotron Source

  • Authors: B Kiran, SR Garg, CK Garg, S Lal, SK Nath, R Jangir, SR Kane, …
    Journal: Proceedings of the Theme Meeting on Spectroscopy Using Indus Synchrotron
    Year: 2023

Facile Single-pot Synthesis of Fe-doped Nitrogen-rich Graphitic Carbon Nitride (Fe2O3/g-C3N4) Bifunctional Photocatalysts Derived from Urea for White LED-mediated Aldol Condensation Reaction

  • Authors: BA Maru, R Joshi, VJ Rao, SR Kane, CK Modi
    Journal: Inorganic Chemistry Communications
    Year: 2025

 

Marcin Szczęch | Experimental methods | Excellence in Innovation

Assoc. Prof. Dr. Marcin Szczęch | Experimental methods | Excellence in Innovation

AGH University of Krakow | Poland

Marcin Szczęch is a professor at the AGH University of Krakow in Poland, specializing in the study of magnetic fluids (both magnetorheological and ferrofluid) and their applications, particularly in sealing technology. With an academic career dedicated to exploring fluid dynamics and material science, Szczęch’s work has influenced several engineering fields, contributing both to theoretical studies and practical solutions. His groundbreaking contributions, particularly in magnetic fluid sealing, have earned him a reputation as a leading researcher in his field.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Marcin Szczęch’s academic journey began at the AGH University of Krakow, where he earned both his Bachelor’s and Ph.D. in Mechanical Engineering. His Ph.D. thesis focused on the durability of rotary ferrofluid seals in water environments, setting the foundation for his expertise in magnetic fluid applications. After earning his Doctor of Philosophy in 2014, he further advanced his research by exploring the continuity behavior of liquid rings formed by magnetic liquids, which earned him a post-doctoral degree in 2021.

Professional Endeavors 💼

Since 2011, Szczęch has been a faculty member at the AGH University of Krakow, currently holding the position of Professor at the Faculty of Mechanical Engineering and Robotics. In this role, he has not only continued to drive forward his research on magnetic fluids but also contributed significantly to the academic environment by mentoring over 40 students and supervising doctoral research projects. His main research areas focus on magnetorheological and ferrofluids and their use in various industrial applications, especially for fluid seals, vibration isolators, and lubrication systems.

Contributions and Research Focus 🔬

Marcin Szczęch’s research is primarily focused on magnetic fluids and their practical applications. His work has explored the use of these fluids in various contexts, such as magnetic fluid sealing systems, lubrication systems, and vibration isolators. Some of his most notable projects include the development of the Compact Magnetic Fluid Seal (CMFS) and research into biocompatible coatings for medical applications. He has also worked extensively on magnetic fluid lubricated bearings, contributing to the understanding of how these materials operate under magnetic field conditions.

Impact and Influence 🌍

Marcin Szczęch has made a significant impact in both academia and industry. His published research in prominent journals and his extensive patent portfolio (24 patents granted by the Polish Patent Office) underscores his ability to not only advance the scientific understanding of magnetic fluids but also provide practical solutions for industries such as machine design, materials science, and bioengineering. His multidisciplinary research continues to push the boundaries of engineering, positioning him as a key influencer in the development of innovative fluid dynamics solutions.

Academic Cites and Scholarly Recognition 📚

Szczęch’s scholarly work has earned him a strong reputation, as evidenced by his 52 publications on the AGH BaDAP list and 23 indexed in the Web of Science database. With an H-index of 9, Szczęch’s work has been cited numerous times, indicating its relevance and importance in the academic community. His contributions to magnetic fluid dynamics have gained recognition in a wide array of engineering disciplines, cementing his status as a thought leader in the field.

Research Skills and Expertise ⚙️

Szczęch is proficient in a variety of engineering programs such as SolidWorks, AutoCAD, Matlab, Mathcad, Ansys, and LabVIEW, and is well-versed in operating specialized research equipment like rotational rheometers, particle distribution analyzers, and 3D scanners. His expertise in magnetic fluids, coupled with his command of these advanced tools, allows him to carry out both theoretical and experimental studies that bridge the gap between research and industrial application.

Teaching Experience 📖

As a professor, Szczęch teaches a wide range of courses, including Fundamentals of Machine Construction, Machine Design, Modern Engineering Materials, and Computer-Aided Design. His teaching has positively impacted numerous students, with more than 40 thesis works realized under his supervision. He plays an active role in shaping the next generation of engineers and researchers, fostering a deep understanding of both fundamental principles and practical applications of magnetic fluid technologies.

Awards and Honors 🏆

Marcin Szczęch’s work has been recognized through various grants, patents, and research projects. He has received numerous accolades for his contributions to engineering, particularly in the areas of magnetic fluid sealing systems and lubrication technologies. His 24 patents and participation in several innovative research projects underscore his commitment to pushing the envelope of applied research. Additionally, he has been recognized for his role in supervising and mentoring students, further establishing his credibility as an academic leader.

Legacy and Future Contributions 🌱

Marcin Szczęch’s legacy is shaped by his contributions to magnetic fluid technology, especially in the development of advanced seals, lubricants, and vibration isolators. Looking forward, Szczęch is poised to expand his research into sustainable and eco-friendly applications of magnetic fluids, particularly in the context of green engineering and biotechnology. His future contributions could bridge the gap between advanced materials and sustainability, aligning his work with the growing global focus on environmentally conscious engineering solutions.

Publications Top Notes

Research into the pressure capability and friction torque of a rotary lip seal lubricated by ferrofluid

  • Authors: Marcin Szczęch
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2025

Analysis of a new type of electric power steering gear with two pinions engaged on the same set of teeth on the rack

  • Authors: Marcin Szczęch, Marcin Nakielski, Jaroslaw Bujak
    Journal: Tribologia: teoria i praktyka
    Year: 2024

Comparative study of models and a new model of ferrofluid viscosity under magnetic fields and various temperatures

  • Authors: Marcin Szczęch, Tarasevych Yuliia
    Journal: Tribologia: teoria i praktyka
    Year: 2024

Research into the properties of magnetic fluids produced by milling technology

  • Authors: Wojciech Horak, Marcin Szczęch
    Journal: Tribologia: teoria i praktyka
    Year: 2024

The influence of printing parameters on leakage and strength of fused deposition modelling 3D printed parts

  • Authors: Marcin Szczęch, Wojciech Sikora
    Journal: Advances in Science and Technology Research Journal
    Year: 2024

 

Lindobuhle Miya | Data Analysis Techniques | Best Researcher Award

Mr. Lindobuhle Miya | Data Analysis Techniques | Best Researcher Award

PhD student at University of Johannesburg, South Africa

Lindobuhle Alfred Miya is a modest and daring young researcher with a strong background in chemistry, physics, and nanoscience. He is currently pursuing a Doctor of Philosophy in Chemistry at the University of Johannesburg, focusing on improving supercapacitor performance through his research on cobalt-based materials. With a passion for renewable energy, Lindobuhle’s research aims to contribute to the development of high-performance energy storage systems. His previous studies at the University of the Free State involved in-depth research on rare-earth doped zinc selenide for light-emitting materials. Along with his academic work, he has demonstrated leadership in peer facilitation and mentorship. Lindobuhle is eager to make a significant impact in the scientific community through publications and presentations, with aspirations to advance his career through collaborative efforts in a fast-paced environment.

👨‍🎓Profile

🎓Education 

Lindobuhle Alfred Miya’s academic journey began with a Bachelor of Science in Chemistry and Physics from the University of the Free State, where he developed a strong foundation in scientific principles. He continued his education with a Master’s in Nanoscience (2020-2023), researching rare-earth doped zinc selenide for light-emitting materials. His work employed advanced characterization techniques such as X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy, leading to significant discoveries regarding the luminescence efficiency of doped materials. Currently, he is working toward his PhD in Chemistry at the University of Johannesburg, where his research is focused on enhancing supercapacitor performance through cobalt-based materials. Using modern electrochemical techniques, Lindobuhle is exploring energy storage applications with a specific focus on cycling stability and rate capability. His educational pursuits reflect his dedication to pushing the boundaries of materials science and energy storage technologies.

💼Professional Experience 

Lindobuhle Alfred Miya has gained valuable experience through various academic and mentorship roles. He served as a Peer Facilitator at the University of the Free State from 2019 to 2021, where he assisted students with supplemental instruction, learning facilitation, and assessment development. This role enhanced his leadership and communication skills, fostering his ability to guide peers effectively. Lindobuhle is currently engaging in Peer Mentorship at the University of Johannesburg, where he provides guidance and emotional support to his mentees, sharing his research experiences and encouraging the development of professional networks. These roles have helped him refine his ability to foster student engagement, while promoting self-sufficiency among mentees. His involvement in both peer learning and mentorship has provided him with a unique perspective on fostering collaboration and teamwork, crucial aspects of his research career as he continues to evolve in a fast-paced scientific environment.

🏅Awards and Honors 

Lindobuhle Alfred Miya has been recognized for his excellence in both research and academic pursuits. He earned a Scholarship at the University of the Free State for his outstanding work in Nanoscience, which helped propel him into more advanced studies. His achievements in research were also highlighted at the Research Conference 2022, where he discussed innovation and the use of research to improve humanity. Lindobuhle’s academic accomplishments also extend to his athletic achievements, including his Eastern Free State Cross Country Championship win in 2016. He has received commendations for his contributions to scientific research and is recognized for his commitment to improving energy storage technologies. His work on ZnSe doped with Yb3+ has been widely published, including in the Materials Today Communications journal. Lindobuhle’s awards underscore his dedication to both his academic growth and his contributions to society through research.

🔬Research Focus 

Lindobuhle Alfred Miya’s primary research focus is on enhancing the performance of supercapacitors through the development of cobalt-based materials for energy storage applications. His current research at the University of Johannesburg explores various synthesis methods, including solid-state reactions, hydrothermal synthesis, and wet chemical processes, to improve the electrochemical properties of these materials. Using advanced electrochemical techniques such as cyclic voltammetry, galvanostatic charge-discharge testing, and electrical impedance spectroscopy, Lindobuhle is assessing critical performance parameters, including specific capacitance, cycling stability, and rate capability. His work is pivotal in the development of high-performance energy storage devices, contributing to renewable energy applications. Additionally, his previous research in nanoscience focused on rare-earth doped ZnSe, where he investigated its potential for optoelectronic applications. Lindobuhle’s research is deeply aligned with the growing demand for advanced materials in both energy storage and optical technologies.

🧠Research Skills 

Lindobuhle Alfred Miya possesses a diverse set of research skills crucial for his studies in materials science and energy storage. He has gained expertise in various synthesis methods such as solid-state reactions, hydrothermal synthesis, and wet chemical processes to develop and enhance the properties of cobalt-based materials for supercapacitors. His technical skills extend to advanced characterization techniques, including X-ray diffraction, Transmission Electron Microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Lindobuhle is proficient in using electrochemical testing techniques, including cyclic voltammetry and galvanostatic charge-discharge testing, to evaluate the performance of energy storage devices. His ability to assess structural, morphological, and optical properties of materials is further enhanced by his strong foundation in critical thinking, problem-solving, and analytical skills. These research skills are integral to his ability to conduct high-quality research in nanoscience and energy storage technologies.

Publications Top Notes

Structure and optical properties of Er3+ doped ZnSe nanoparticles

  • Authors: L.A. Miya, L.F. Koao, S.V. Motloung, D.D. Hile, H.C. Swart, T.E. Motaung
    Journal: Optical Materials
    Year: 2024

Study of the structural, morphological and optical properties of ZnSe doped with Yb3+

  • Authors: L.A. Miya, S.V. Motloung, T.E. Motaung, H.C. Swart, D.D. Hile, L.F. Koao
    Journal: Materials Today Communications
    Year: 2022

Chadha Henchiri | Experimental methods | Member

Dr. Chadha Henchiri | Experimental methods | Member

PHD at University of Sfax, Tunisia

Chadha Henchiri, a Tunisian physicist born on September 19, 1993, specializes in Materials Science with a keen interest in Magnetism and Dielectrics. She obtained her doctoral thesis from the University of Sfax under the supervision of Pr. E. Dhahri. With a solid foundation in physics from the University of Gafsa, Chadha has showcased her expertise through publications in esteemed journals and active participation in scientific events. She possesses a diverse skill set in synthesis methodologies, experimental design, and data analysis. Currently serving as an Assistant Teacher at the Preparatory Institute for Engineering Studies of Gafsa, Chadha continues to contribute significantly to her field.

Professional Profiles:

Education

Doctoral Thesis: Physics – Material physics University: University of Sfax Supervisor: Pr. E. Dhahri Research Master’s Degree: Physics – Materials Physics and Energy Management University: University of Gafsa Supervisor: Pr. E. Dhahri Fundamental License: Physics University: University of Gafsa

Professional Experiences

Chadha Henchiri has served as a temporary assistant at the Faculty of Science of Gafsa and currently holds the position of Assistant Teacher at the Preparatory Institute for Engineering Studies of Gafsa.

Research Experiences / Skills

Chadha Henchiri possesses expertise in various synthesis methodologies, experimental designs, instrument handling, and characterization techniques, including crystal structure analysis, surface morphology examination, thermal analysis, and magnetic property analysis. She is proficient in several research packages and software for data analysis and interpretation.

Area of Research Interests

Chadha Henchiri’s primary interest lies in Materials Science, with a focus on Magnetism, Dielectrics, and the modulation of magnetic properties using MATLAB software. She is enthusiastic about engaging in challenging fields of physics and delivering her best efforts.

Research Focus:

Chadha Henchiri’s research focuses primarily on the structural and magnetic properties of various materials, particularly manganites and spinel ferrites. Her work delves into understanding the intricate relationships between structural characteristics and magnetic behavior, with a particular emphasis on magnetocaloric effects at room temperature. Through theoretical studies and experimental investigations, Chadha has contributed significantly to the understanding of magnetocaloric phenomena in lanthanum manganite lacunar compounds and CoFeCuO4 spinel ferrite nanoparticles. Her research not only advances the fundamental understanding of these materials but also holds promise for potential applications in areas such as energy conversion and magnetic refrigeration.

Publications 

  1. Structural, dielectric, electrical and modulus spectroscopic characteristics of CoFeCuO4 spinel ferrite nanoparticles, cited by: 31, Publication date: 2021.
  2. Structural and magnetic properties of La1-xxMnO3 (x = 0.1; 0.2 and 0.3) manganites, cited by: 18, Publication date: 2019.
  3. Structural study and large magnetocaloric entropy change at room temperature of La 1− x□ x MnO 3 compounds, cited by: 14, Publication date: 2020.
  4. Theoretical study of the magnetic properties and the magnetocaloric effect in lanthanum manganite lacunar compounds, cited by: 8, Publication date: 2022.
  5. Study of structural properties and conduction mechanisms of La0. 67Ca0. 2Ba0. 13Fe0. 97Ti0. 03O3 perovskite, cited by: 6, Publication date: 2022.
  6. Study of structural, magnetic, magnetocaloric properties and critical behavior of CoFeCuO4 spinel ferrite, cited by: 6, Publication date: 2021.
  7. Landau mean-field analysis and estimation of the spontaneous magnetization from magnetic entropy change, cited by: 5, Publication date: 2021.
  8. Modeling the Magnetocaloric Effect of La0.8MnO3 by the Mean-Field Theorycited by: 4, Publication date: 2020.
  9. Theoretical study of magnetic and magnetocaloric properties and MCE modeling by the mean-field theory in CoFeCuO4 spinel ferrite, cited by: 2, Publication date: 2022.
  10. Correlation between electronic and magnetic properties of LaMnO 3-δ: experimental study and DFT-MBJ calculationPublication date: 2024.

 

 

.