Aleksandra Wierzbicka | Experimental methods | Women Researcher Award

Dr. Aleksandra Wierzbicka | Experimental methods | Women Researcher Award

Institute of Physics, Polish Academy of Sciences | Poland

Dr. Aleksandra Wierzbicka is a highly accomplished physicist and materials science researcher, currently serving as an Assistant Professor at the Institute of Physics of the Polish Academy of Sciences (IFPAN) in Warsaw. With over a decade of expertise in X-ray diffraction, epitaxy techniques, and nanostructure analysis, she is recognized for her contributions to both scientific research and education. Her work bridges fundamental physics and practical applications in nanoelectronics, optoelectronics, and photonics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Aleksandra began her academic journey at the University of Warsaw, earning her undergraduate degree in Physics, specializing in Material Physics and Optics. She continued with a Master’s degree in X-ray Structural Research, where she explored mixed semiconductor crystals. Her deep interest in structural studies of materials led her to pursue a PhD at the Institute of Physics (PAS), where she conducted pioneering research on epitaxial lateral overgrowth structures, focusing on stress and defects in semiconductors using X-ray diffraction and topography techniques.

🧪 Professional Endeavors

Since 2010, she has held the position of Assistant Professor at IFPAN, where her role spans scientific research, grant writing, student supervision, and international collaborations. In parallel, she has also contributed to physics education at the Jan Nowak-Jeziorański Community Primary School No. 1 STO, demonstrating her dedication to science communication and youth development.

🔬 Contributions and Research Focus

Dr. Wierzbicka has been at the forefront of innovative epitaxial growth techniques, particularly molecular beam epitaxy (MBE) and liquid-phase epitaxy (LPE). Her work emphasizes the structural characterization of GaN nanowires, core-shell structures, and low-dimensional semiconductor heterostructures. She is also an expert in high-resolution X-ray diffraction and synchrotron-based techniques, contributing to the understanding of lattice disorder, defect distribution, and internal electric fields in complex materials.

🌍 Impact and Influence

Her research has been instrumental in numerous European Union-funded projects, including COST actions, OPUS, SONATA, and NanoBiom, positioning her as a key player in collaborative science. As a project manager and contractor in various high-impact studies, her work has enabled breakthroughs in semiconductor device engineering, sensor technology, and photonics. Her invited talks—such as at CMD 31 in Braga, Portugal further reflect her international recognition.

📊 Academic Citations

Dr. Wierzbicka is the author of 63 peer-reviewed scientific publications, with a citation count exceeding 550 (as per Web of Science). Her ResearcherID (C-8880-2016) and ORCID (0000-0003-1379-5941) profiles showcase her scholarly contributions and visibility in the field of solid-state physics and nanomaterials.

🧠 Research Skills

Aleksandra possesses specialized expertise in:

  • High-resolution X-ray diffraction

  • Synchrotron radiation techniques

  • MBE growth methods

  • Defect and stress analysis

  • Scientific software such as Origin, Panalytical Epitaxy, VESTA, and WinWulff

Her skills are supported by strong computational abilities and analytical rigor, critical for interpreting complex material behavior.

🧑‍🏫 Teaching Experience

In addition to her research, Dr. Wierzbicka is a committed educator, engaging both university students and school-aged learners. Her ability to translate complex physical concepts into understandable content makes her an asset in promoting STEM education. She is actively involved in mentoring and curriculum development in physics.

🏆 Awards and Honors

Dr. Wierzbicka received her PhD with honors, and her continuous involvement in competitive grant programs like Opus, Sonata, and PBS demonstrates the trust placed in her by the scientific community. Being selected as manager and principal investigator in prestigious international projects (e.g., ANKA Synchrotron Facility at KIT) is a strong indicator of her recognized scientific leadership.

🌱 Legacy and Future Contributions

Aleksandra Wierzbicka’s career reflects an ongoing commitment to scientific excellence, education, and international cooperation. She is poised to contribute further to the advancement of nanoscale materials for use in next-generation electronics and optics. Her potential lies not only in her scientific output but also in her ability to inspire and mentor future generations of physicists especially young women in STEM. Looking forward, her trajectory is aligned with leading and shaping global research initiatives in epitaxy and semiconductor technology.

Publications Top Notes

📄Structural and optical properties of in situ Eu-doped ZnCdO/ZnMgO superlattices grown by plasma-assisted molecular beam epitaxy
  • Authors: Anastasiia Lysak, Aleksandra Wierzbicka, Sergio Magalhaes, Piotr Dłużewski, Rafał Jakieła, Michał Szot, Zeinab Khosravizadeh, Abinash Adhikari, Adrian Kozanecki, Ewa Przeździecka

  • Journal: Nanoscale

  • Year: 2025

📄Strain distribution in GaN/AlN superlattices grown on AlN/sapphire templates: comparison of X-ray diffraction and photoluminescence studies
  • Authors: Aleksandra Wierzbicka, Agata Kaminska, Kamil Sobczak, Dawid Jankowski, Kamil Koronski, Pawel Strak, Marta Sobanska, Zbigniew R. Zytkiewicz

  • Journal: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

  • Year: 2025

📄Influence of the Annealing Temperature on the Properties of {ZnO/CdO}30 Superlattices Deposited on c-Plane Al₂O₃ Substrate by MBE
  • Authors: Anastasiia Lysak, Aleksandra Wierzbicka, Piotr Dłużewski, Marcin Stachowicz, Jacek Sajkowski, Ewa Przezdziecka

  • Journal: Crystals

  • Year: 2025

📄 Enhancing GaN Nanowires Performance Through Partial Coverage with Oxide Shells
  • Authors: Radoslaw Szymon, Eunika Zielony, Marta Sobanska, Tomasz Stachurski, Anna Reszka, Aleksandra Wierzbicka, Sylwia Gieraltowska, Zbigniew R. Zytkiewicz

  • Journal: Small

  • Year: 2024

📄 Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties
  • Authors: Monika Ozga, Eunika Zielony, Aleksandra Wierzbicka, Anna Wolska, Marcin Klepka, Marek Godlewski, Bogdan J. Kowalski, Bartłomiej S. Witkowski

  • Journal: Beilstein Journal of Nanotechnology

  • Year: 2024

 

 

 

Aleksandr Sipatov | Experimental methods | Best Researcher Award

Prof. Aleksandr Sipatov | Experimental methods | Best Researcher Award

Professor at National Technical Univercity “Kharkiv Polytechnic Institute” | Ukraine

Dr. Alexander Yurievich Sipatov is a distinguished Professor in the Metal and Semiconductor Physics Department at the National Technical University “Kharkov Polytechnic Institute” (KPI), Ukraine. Born on March 21, 1957, in Nizhny Novgorod, Russia, Dr. Sipatov has had a long and illustrious career spanning over several decades in the field of semiconductor physics and nanostructures. His work has made notable contributions to the development of quantum effects and the exploration of superconductivity and thermoelectric properties in semiconductor multilayer nanostructures.

👨‍🎓Profile

Google scholar 

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Sipatov’s academic journey began at the National Technical University “Kharkov Polytechnic Institute” (KPI), where he earned his Engineer-Physicist degree in 1980. He pursued postgraduate studies at KPI, completing his Ph.D. in 1986 and later achieving the title of Doctor of Science in 2007. Between 1995 and 1998, Dr. Sipatov was awarded a Postdoctoral stipend to further hone his expertise and research skills. His academic achievements laid the foundation for a highly successful career in semiconductor physics.

Professional Endeavors 💼

Dr. Sipatov’s professional career at KPI began in 1980 as an Engineer, and his role rapidly evolved over the years. He served as a Junior Researcher from 1983 to 1990, a Researcher from 1990 to 1992, and as a Senior Researcher from 1992 to 1995 and 1998 to 2007. His increasing responsibilities and leadership roles included becoming a Leading Researcher from 2007 to 2012 and the Head of the Technical Cryophysics Department at KPI from 2012 to 2020. Since 2020, he has held the position of Professor at KPI, where he continues to contribute significantly to both teaching and research.

Contributions and Research Focus 🔬

Dr. Sipatov’s research focuses on the growth, structure, and electronic, optic, magnetic, and thermoelectric properties of semiconductor multilayer nanostructures, particularly chalcogenides of elements such as lead (Pb), tin (Sn), bismuth (Bi), europium (Eu), and ytterbium (Yb). His studies have led to several groundbreaking discoveries, including:

  1. Energy Spectrum Quantization in thin films, notably in PbS films and PbS-EuS superlattices, identified by shifts in the photoluminescence edge.
  2. Resonant Tunneling phenomena observed through negative differential resistance in PbS-EuS double barrier tunneling structures.
  3. The discovery of superconductivity in IV-VI superlattices, with Tc values between 3-6 K.

Currently, Dr. Sipatov is investigating the thermoelectric and magnetic properties of semiconductor thin films and nanostructures, which have important applications in energy efficiency and advanced electronics.

Impact and Influence 🌍

Dr. Sipatov’s work has had a profound impact on quantum physics and the field of nanostructures. His findings have broadened the understanding of quantum effects in semiconductors, contributing to advances in quantum technologies and low-temperature physics. Furthermore, his contributions to superconductivity have opened up new avenues for research in quantum computing and energy-efficient technologies. The interdisciplinary nature of his work positions him as a key figure in nanoscience, with direct implications for industries ranging from electronics to energy storage.

Academic Cites 📚

Dr. Sipatov is a highly published researcher with more than 60 publications in peer-reviewed journals, showcasing his dedication to advancing scientific knowledge. His work is indexed in Scopus (ID: 7004596183), highlighting his significant influence and recognition in the scientific community. His research continues to be cited by scholars worldwide, cementing his reputation as a thought leader in semiconductor physics and nanotechnology.

Research Skills 🔧

Dr. Sipatov possesses a broad range of specialized research skills, including:

  • Material Synthesis and Growth of semiconductor multilayer nanostructures.
  • Expertise in quantum effects such as energy spectrum quantization and resonant tunneling.
  • Advanced techniques for studying superconductivity and the magnetic properties of semiconductor materials.
  • Deep understanding of thermoelectric phenomena and their practical applications.

His expertise in low-temperature physics and nanoelectronics places him at the cutting edge of research in these fields.

Teaching Experience 📖

As a Professor at KPI, Dr. Sipatov has dedicated a significant portion of his career to teaching and mentoring the next generation of scientists and engineers. His leadership as the Head of the Technical Cryophysics Department between 2012 and 2020 provided an invaluable platform for the development of young researchers in the field of semiconductor physics. Through his courses and research supervision, Dr. Sipatov has influenced countless students, shaping the future of material science and nanotechnology.

Legacy and Future Contributions 🔮

Dr. Sipatov’s research legacy lies in his innovative contributions to the understanding of quantum effects in semiconductor nanostructures and superconductivity. His work on thermoelectric and magnetic properties holds the potential to revolutionize energy-efficient technologies and next-generation electronics. Moving forward, his future contributions are likely to focus on advanced materials for quantum computing and renewable energy solutions, continuing to drive progress in sustainable technologies and nanoscience.

Publications Top Notes

Interdiffusion in chalcogenide semiconductor superlattice nanostructures
  • Authors: A.Y. Sipatov, L.E. Konotopsky, E. Moroz, V.V. Volobuev
    Journal: Solid State Communications
    Year: 2025

Quantum interference phenomena and electron – electron interaction in topological insulator Bi2Se3 thin polycrystalline films
  • Authors: O.I. Rogachova, O. Pavlosiuk, A.V. Meriuts, K.V. Novak, D. Kaczorowski
    Journal: Thin Solid Films
    Year: 2022

Growth mechanism, structure and thermoelectric properties of thermally evaporated Bi2(Te0.9 Se01)3 thin films
  • Authors: O.I. Rogachova, S. Kryvonohov, A.G. Fedorov, O.N. Nashchekina, K.V. Novak
    Journal: Functional Materials
    Year: 2022

Effect of aging on thermoelectric properties of the Bi2Te3 polycrystals and thin films
  • Authors: O.I. Rogachova, K.V. Novak, A.N. Doroshenko, T.I. Khramova, S.A. Saenko
    Journal: Functional Materials
    Year: 2021

Size effects and thermoelectric properties of Bi0.98Sb0.02 thin films
  • Authors: O.I. Rogachova, K.V. Novak, D.S. Orlova, O.N. Nashchekina, G.V. Lisachuk
    Journal: Journal of Thermoelectricity
    Year: 2020

 

Faisal faiz | Experimental methods | Physics Industry Leadership Award

Dr. Faisal faiz | Experimental methods | Physics Industry Leadership Award

Assistant Professor at Shenzhen university | China

Dr. Faisal Faiz is a dedicated nanotechnologist and Research Fellow at the College of Electronics and Information Engineering, Shenzhen University, Guangdong, China. With a robust academic background, he holds a Ph.D. in Analytical Chemistry from Nanjing University, China. His thesis focused on the synthesis of nanomagnetic materials for speciation analysis of heavy toxic metals in environmental water. His work, especially in functionalized nanomaterials for environmental applications, has positioned him as a key contributor to the nanotechnology and environmental science fields.

👨‍🎓Profile

Google scholar

Scopus 

ORCID

Early Academic Pursuits 📚

Dr. Faiz’s academic journey began with a Bachelor’s degree in Chemistry, Physics, and Mathematics from Bahauddin Zakariya University, Pakistan, followed by a Master’s in Applied Chemistry from the University of Engineering and Technology, Lahore. His keen interest in research led him to pursue an M.Phil. in Applied Chemistry at Bahauddin Zakariya University. These foundational studies laid the groundwork for his doctoral work at Nanjing University, where he explored innovative approaches in nanomaterial synthesis and heavy metal pollutant detection.

Professional Endeavors 🧑‍🔬

Dr. Faiz has had a diverse career spanning several research institutions and teaching roles. His professional journey includes a Postdoctoral Research Scholar position at Shenzhen University, where he continues his pioneering research on nanomaterials and environmental sustainability. Prior to this, he worked as a Research Assistant at the Pakistan Institute of Nuclear Science & Technology and a Senior Lecturer at Allama Iqbal Open University. These roles have allowed Dr. Faiz to hone his research skills while contributing to environmental monitoring, sustainable technology, and energy applications.

Contributions and Research Focus 🔬

Dr. Faiz’s primary research focus is on the development of functionalized nanomaterials to address environmental challenges. His research spans three core areas:

  • Environmental Applications of Nanomaterials 🌍: He explores metal oxides and magnetic nanoparticles to create efficient sensors and advanced systems for detecting toxic gases and pollutants in air and water. His work is focused on real-time environmental monitoring, essential for ecological sustainability and public health.

  • Advanced Sensing Technologies ⚡: Dr. Faiz is advancing the development of MEMS-based gas sensors using inkjet printing technology. His efforts aim to improve the sensitivity, speed, and affordability of sensors for detecting hazardous gases at trace levels.

  • Supercapacitors for Energy and Environmental Applications 🔋: Dr. Faiz’s work on supercapacitors involves optimizing nanomaterials like metal oxides for energy storage systems that can be utilized in renewable energy storage and energy-efficient industrial devices.

Impact and Influence 🌍

Dr. Faiz’s work has made significant contributions to environmental science, nanotechnology, and sustainable energy systems. His research into nanomaterials has led to the development of new solutions for toxic pollutant detection, environmental monitoring, and energy storage technologies. With patents and research collaborations on a national level, he is helping to drive forward the global agenda on environmental sustainability.

Academic Cites 📑

Throughout his academic career, Dr. Faiz has been widely cited in scientific literature for his work on magnetic nanoparticles, environmental remediation, and nanomaterial synthesis. His contributions to toxic metal removal from water and the development of advanced sensors have made him a respected figure in the nanotechnology community. His publications continue to inspire new research in the fields of materials science and environmental engineering.

Research Skills 🛠️

Dr. Faiz possesses a diverse skill set in various experimental techniques, including:

  • Electron Microscopy (SEM, TEM)
  • X-ray Photoelectron Spectroscopy (XPS)
  • X-ray Diffraction (XRD)
  • Electrochemical Workstation Techniques
  • Atomic Absorption Spectrometry (AAS) and High-Performance Liquid Chromatography (HPLC)

These research skills enable him to conduct cutting-edge studies in nanomaterials and environmental monitoring. His ability to integrate various analytical techniques enhances the depth of his research and helps in developing innovative solutions for environmental challenges.

Teaching Experience 🏫

Dr. Faiz has an extensive teaching background, including roles as a Senior Lecturer and Science Teacher. He has taught a range of chemistry courses and has been involved in academic administration, including being a coordinator for international students and a class representative. His teaching approach blends scientific rigor with practical applications, encouraging students to engage with cutting-edge technologies and environmental solutions.

Awards and Honors 🏅

Dr. Faiz has been recognized with several awards, including:

  • Chinese Government Scholarship for his Ph.D. studies at Nanjing University.
  • Best Postgraduate Researcher award at the Institute of Chemical Sciences, Bahauddin Zakariya University.
  • Distinguished Researcher at the Pakistan Institute of Nuclear Science & Technology.

These accolades reflect his excellence in research, contribution to scientific knowledge, and commitment to environmental sustainability.

Legacy and Future Contributions 🌱

Dr. Faiz’s work promises to leave a lasting legacy in the fields of nanotechnology and environmental science. As he continues to develop functionalized nanomaterials, his research has the potential to transform industries by offering sustainable solutions for pollution detection and energy storage. Looking forward, he aims to push the boundaries of green nanomaterials, further advancing technologies for clean energy, pollution remediation, and environmental protection.

Publications Top Notes

Innovative adsorbent for sulphur dioxide: synergy of activated carbon, polyionic liquids, and chitosan

  • Authors: A. Wahab, Abdul; A. Farooq, Amjad; F. Faiz, Faisal; J. Wu, Jianghua; Y. Faiz, Yasir
    Journal: Adsorption
    Year: 2025

Tailoring MnO2 nanowire defects with K-doping for enhanced electrochemical energy storage in aqueous supercapacitors

  • Authors: J. Wu, Jianghua; F. Faiz, Faisal; M. Ahmad, Mashkoor; X. Pan, Xiaofang; Y. Faiz, Yasir
    Journal: Applied Surface Science
    Year: 2025

Removal of gaseous methyl iodide using hexamethylenetetramine and triethylenediamine impregnated activated carbon: A comparative study

  • Authors: T. Yaqoob, M. Ahmad, A. Farooq, F. Ali, Y. Faiz, A. Shah, F. Faiz, M.A. Irshad
    Journal: Diamond and Related Materials
    Year: 2023

Tuning electrocatalytic activity of Co3O4 nanosheets using CdS nanoparticles for highly sensitive non-enzymatic cholesterol biosensor

  • Authors: H. Waleed, H.U. Rasheed, A. Nisar, A. Zafar, Y. Liu, S. Karim, Y. Yu, H. Sun
    Journal: Materials Science in Semiconductor Processing
    Year: 2024

Mesoporous Co3O4@CdS nanorods as anode for high-performance lithium-ion batteries with improved lithium storage capacity and cycle life

  • Authors: H. Waleed, H.U. Rasheed, F. Faiz, A. Zafar, S. Javed, Y. Liu, S. Karim, H. Sun
    Journal: RSC Advances
    Year: 2024

 

 

Srither SR | Experimental methods | Best Researcher Award

Dr. Srither SR | Experimental methods | Best Researcher Award

Associate Professor at Koneru Lakshmaiah Education Foundation (KLEF) | India

Dr. SR. Srither is an accomplished Research Associate with a dynamic career spanning both India and abroad. With extensive expertise in Nanotechnology, his work focuses on energy harvesting, material synthesis, and nanocomposite development. He has contributed significantly to the advancement of piezoelectric and triboelectric technologies, with a primary focus on creating self-powered systems for flexible applications. His journey includes notable academic and professional roles across institutions such as the Southern University of Science and Technology (China) and Centre for Nano and Soft Matter Sciences (India).

👨‍🎓Profile

Google scholar 

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Srither’s academic journey began with his B.E. in Electronics and Communication from St. Joseph’s College of Engineering, Chennai, followed by an M.Tech in Nanoscience and Technology from K.S. Rangasamy College of Technology, Coimbatore, where he graduated First Class with Distinction. His thirst for knowledge led him to pursue a Ph.D. in Nanotechnology at Anna University, Chennai. His early academic interests focused on the synthesis and characterization of nanomaterials, laying the foundation for his cutting-edge research in energy storage and conversion technologies.

Professional Endeavors 💼

Dr. Srither’s career trajectory showcases his commitment to research and teaching. He currently serves as a Visiting Professor at KL Deemed to be University, where he imparts his expertise to students in the Department of Electronics and Communication Engineering. His professional experiences extend across multiple prestigious research roles, notably as a Post-doctoral Fellow at the Quantum Information & Intelligent Energy Harvesting Lab, Southern University of Science and Technology (SUSTech), Shenzhen, China. His work continues to influence nanotechnology, energy harvesting, and energy storage devices.

Contributions and Research Focus 🔬

Dr. Srither’s research focuses on nanostructures, nanocomposites, and their applications in self-powered systems. Key contributions include the fabrication of piezo/triboelectric hybrid nanogenerators that are low-cost and flexible, designed for a wide range of IoT-enabled devices and health monitoring applications. His research also includes groundbreaking work on transparent polymers for triboelectric energy harvesting and the exploration of manganese dioxide nanoparticles for energy conversion applications.

Impact and Influence 🌍

Dr. Srither has made a lasting impact on the nanotechnology field through his innovative research and interdisciplinary projects. His work on energy harvesting has revolutionized the development of wearable devices and self-powered systems, enabling sustainable technology in fields like IoT and healthcare. His research has been recognized by notable platforms, including the Ministry of Science and Technology, Govt. of India, and has been showcased through multiple publications and patents.

Academic Cites 📑

Dr. Srither’s work has been cited extensively in high-impact journals, with his research on triboelectric nanogenerators and nanocomposite materials contributing significantly to the broader field of renewable energy and flexible electronics. He has also been a frequent presenter at international conferences and symposia, where his findings continue to inspire and influence researchers worldwide.

Research Skills 🧪

Dr. Srither possesses a diverse range of experimental skills that include spin coating, spray coating, electrospinning, and spray pyrolysis, along with advanced characterization techniques like X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-Vis spectroscopy. His expertise in electrochemical testing and device evaluation has been pivotal in the development of energy harvesting systems and energy storage devices.

Teaching Experience 🍎

Dr. Srither’s role as a Visiting Professor at KL Deemed to be University allows him to impart his knowledge to undergraduate and postgraduate students in Nanotechnology. He also has significant experience in practical teaching, having assisted professors in lab work, project development, and demonstrations in nanotechnology. His involvement in designing and executing exhibits has further enriched his teaching journey, preparing students for real-world applications of nanoscience and technology.

Awards and Honors 🏆

Dr. Srither’s dedication to excellence has been recognized through numerous accolades, including the Best Paper Award at the International Conference on Wireless Communication and Emerging Technologies (RAWCET 2022) for his work on a wearable single-electrode mode triboelectric nanogenerator. His innovations have also been featured on the DST website, with recognition from the Ministry of Science and Technology, Govt. of India.

Legacy and Future Contributions 🚀

Dr. Srither’s work sets the foundation for significant advancements in sustainable energy technologies and smart devices. His legacy lies in his ability to merge nanoscience with practical, real-world applications, particularly in energy harvesting and self-powered systems. Moving forward, his ongoing projects, such as motion sensing in sewage tunnels and structural health monitoring applications, promise to continue shaping the future of energy efficiency and smart infrastructure.

Publications Top Notes

High-Sensitivity Optical Fiber-Based SPR Sensor for Early Cancer Cell Detection Using Cerium Oxide and Tungsten Disulfide

  • Authors: N. Hma Salah, Nasih V. Yesudasu, Vasimalla B. Kaur, Baljinder S.R. Srither, S. R. Kumar, Santosh
    Journal: Plasmonics
    Year: 2025

SMF-based SPR sensors utilizing thallium bromide immobilization for detection of various bacterial cells

  • Authors: V. Yesudasu, Vasimalla N. Hma Salah, Nasih S. Chella, Santhosh S.R. Srither, S. R. Kumar, Santosh
    Journal: Microchemical Journal
    Year: 2025

Electrical and dielectric properties of PVA-doped NiGdxFe2-xO4 nanoferrite particles

  • Authors: N Lenin, NJ Raj, RR Kanna, P Karthikeyan, M Balasubramanian, …
    Journal: Materials Science and Engineering: B
    Year: 2024

Simple Non-Invasive Coronary Artery Disease Detection Using Machine Learning

  • Authors: S Kalpana, SR Srither, NR Dhineshbabu, G Nikitha
    Journal: 2024 4th International Conference on Innovative Practices in Technology and …
    Year: 2024

Recent advances in wearable textile-based triboelectric nanogenerators

  • Authors: S Neelakandan, SR Srither, NR Dhineshbabu, S Maloji, O Dahlsten, …
    Journal: Nanomaterials
    Year: 2024

ِAhmed Abdelhady A. Khalil | Experimental methods | Best Researcher Award

ِDr. Ahmed Abdelhady A. Khalil | Experimental methods | Best Researcher Award

Cairo University, National Institute of Laser Enhanced Sciences | Egypt

Ahmed Abd El-Hady Abd El-Moaty Awad, also known by his scientific name Ahmed Abdelhady A. Khalil, is a highly accomplished scholar and researcher in the field of laser systems and non-linear optics. His academic background spans multiple degrees, including a B.S. in Special Physics from Cairo University, an M.Sc. in Laser Systems from the National Institute of Laser Enhanced Sciences (NILES), and a Ph.D. in Laser Systems (2024). His work focuses on materials science, photodetectors, and energy harvesting, particularly within the scope of transition metal dichalcogenides (TMDCs) and photodiodes.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 📚

Ahmed’s academic journey began at Cairo University, where he completed his B.S. in Special Physics in 2006 with high honors. This early pursuit laid the foundation for his deep interest in laser science and optics. In 2010, he pursued advanced coursework for a Master’s degree and continued further studies, earning his M.Sc. in Laser Systems in 2016 from NILES, Cairo University. He later completed predoctoral courses in 2021 before obtaining his Ph.D. in 2024, marking a significant milestone in his educational journey.

Professional Endeavors 💼

Ahmed’s professional path has been closely intertwined with teaching and research. Starting as a Teaching Assistant in 2008, he worked his way up to an Assistant Lecturer by 2018, and eventually a Lecturer in 2024 at the Department of Laser Science and Interaction (LSI), NILES. His professional growth highlights his dedication to education and his ability to mentor the next generation of laser scientists. Additionally, he has contributed to the Nanophotonics Research Laboratory at the American University in Cairo under the guidance of Prof. Mohamed A. Swillam.

Contributions and Research Focus 🔬

Ahmed’s research is centered on laser systems, non-linear optics, and materials science, with particular emphasis on energy harvesting and photodetectors. His work on transition metal dichalcogenides (TMDCs) and MoS2-based photodiodes has been groundbreaking, contributing to the development of novel, fast-response photodetectors. Through his research, Ahmed seeks to advance the performance of photodetection systems, enhancing their speed and efficiency for use in modern optical technologies. His publications in international journals showcase his research in high-impact areas, such as his work on SiC/MoS2 composites and GaN/MoS2 photodiodes.

Impact and Influence 🌍

Ahmed’s work has had a significant impact on the scientific community, particularly in the fields of nanophotonics and laser technology. His research on 2D semiconductor dopants and photodiodes is influencing the future of energy-efficient devices and high-speed photodetectors. His collaborations with renowned scientists, particularly through conferences and journal publications, have helped establish him as a prominent researcher in the laser systems community. By integrating cutting-edge materials into photodetectors, his work is laying the foundation for future innovations in quantum computing and photonics.

Research Skills 🧠

Ahmed has demonstrated high-level research skills throughout his career. He is proficient in experimental techniques such as laser fabrication, thin-film deposition, and characterization of optical materials. His expertise extends to numerical simulations and optical design, making him well-versed in the computational aspects of laser systems and non-linear optics. Additionally, his ability to collaborate with interdisciplinary research groups has enhanced his versatility in applying his findings across various domains of physics and engineering.

Teaching Experience 🎓

As an educator, Ahmed has played a pivotal role in shaping the academic careers of many students in the field of laser science. His teaching experience spans over a decade, during which he has taught a wide range of undergraduate and graduate courses in laser systems and non-linear optics. He has also been involved in supervising student research projects, helping students bridge the gap between theoretical knowledge and practical application in laser technology. His commitment to academic excellence and student development is evident in his approach to innovative teaching.

Awards and Honors 🏆

Throughout his career, Ahmed has earned several awards and honors, including recognition for his outstanding research in photonics and laser systems. His publications in high-impact journals and participation in prestigious conferences are a testament to his academic achievements. His ongoing work, particularly in the TMDC photodetector domain, has garnered international attention and positions him as a leading researcher in materials science.

Legacy and Future Contributions 🚀

Ahmed’s future contributions hold the potential to further transform the field of laser systems and photodetectors. As he continues to explore innovative materials and their applications in energy-efficient technologies, his research is likely to lead to breakthrough advancements in optical communication, quantum computing, and energy harvesting. His legacy as an educator and researcher will inspire future generations of scientists and engineers, further solidifying his position as a leading figure in nanophotonics and laser research.

Publications Top Notes

Thin-film photodiode based on novel SiC/MoS2 composite by RF-sputtering for fast response photodetection

  • Authors: AAA Khalil, AM Karmalawi, AA Abdelmageed, FM EL-Sharkawy, E Mousa, …
    Journal: Optical Materials
    Year: 2024

Impact behavior of a novel GaN/MoS2 composite photodiode based thin-film by RF-sputtering for fast response photodetection application

  • Authors: AAA Khalil, AM Karmalawi, AA Abdelmageed, HAS Al-shamiri, E Mousa, …
    Journal: Optical and Quantum Electronics
    Year: 2024

Fast response fabricated MoS2-photodiode based thin film

  • Authors: AAA Khalil, AM Karmalawi, AA Abdelmageed, HAS Al-shamiri, …
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024

Behavior effect of Semiconductor 2D dopants on time response of TMDC-MoS2 based Schottky-photodiode

  • Authors: AAA Khalil, MTH Abou Kana, MA Swillam
    Journal: 2024 Photonics North (PN)
    Year: 2024

 

 

 

Muhammad Ishaq | Experimental methods | Best Researcher Award

Dr. Muhammad Ishaq | Experimental methods | Best Researcher Award

Shenzhen University | China

Muhammad Ishaq, Ph.D. in Semiconductor Physics and Optical Engineering, is an open-minded and adaptable researcher with a profound passion for applied research and teaching. With experience across diverse environments, he has contributed extensively to the field of solar energy technologies, including thin-film solar cells. Currently, he is an academic researcher at Shenzhen University, China. His global perspective has been honed through multiple international collaborations, notably at Huazhong University of Science and Technology and Shenzhen University.

👨‍🎓Profile

Google scholar

Scopus 

ORCID

Early Academic Pursuits 📚

Muhammad Ishaq’s academic journey began with a Bachelor’s degree in Physics from the University of Peshawar (2012), followed by a Master’s degree in Physics from Abdul Wali Khan University, Pakistan (2016), where he focused on Titanium Dioxide Thin Film for Dye-Sensitized Solar Cells. He went on to earn his Ph.D. in Semiconductor Physics/ Optical Engineering from Huazhong University of Science and Technology, China in 2019, where he specialized in Antimony Chalcogenide Flash Evaporation for thin-film solar cell applications.

Professional Endeavors 💼

After completing his Ph.D., Dr. Ishaq furthered his academic journey with a Post-doctoral Fellowship at Shenzhen University, where he specialized in Sb-chalcogenide, CZTS/Se, and Perovskite solar cells. He is currently a Research Associate at Shenzhen University, China, in the College of Physics and Optoelectronic Engineering. His work focuses on solar energy technologies and material science, where he is driving advancements in energy efficiency.

Contributions and Research Focus 🔬

Dr. Ishaq’s research is innovative and multi-disciplinary, with a primary focus on solar energy and semiconductor physics. He is particularly interested in the development of thin-film solar cells using antimony chalcogenides, perovskites, and copper-doped antimony sulfide. His work aims to improve the efficiency and stability of solar cells by optimizing their material properties through various synthesis methods like physical vapor deposition, sol-gel processing, and chemical vapor deposition. Through this, he contributes to addressing the global energy crisis by advancing renewable energy solutions.

Impact and Influence 🌍

Dr. Ishaq has made significant contributions to the field of solar energy through his innovative research and groundbreaking work. His research has not only advanced the understanding of thin-film solar cell applications but also paved the way for creating more sustainable and cost-effective solar technologies. His work has gained recognition through numerous publications, conference presentations, and collaborations with leading experts in semiconductor physics.

Academic Citations 📚

Dr. Ishaq’s research has garnered wide recognition within the scientific community. His publications in high-impact journals like Nano-Micro Letters, Progress in Photovoltaics, and Advanced Functional Materials have earned substantial citations, making a global impact on semiconductor physics and solar energy technologies.

Research Skills 🔧

Dr. Ishaq possesses extensive skills in research techniques including:

  • UV-Vis Spectroscopy
  • Atomic Force Microscopy
  • Scanning Electron Microscopy (SEM)
  • X-ray Diffraction (XRD)
    Additionally, he has vast experience in synthesizing advanced materials using techniques like physical vapor deposition and chemical vapor deposition. His ability to adapt to cutting-edge methods in material science strengthens his contributions to the development of next-generation solar technologies.

Teaching Experience 🍎

Dr. Ishaq has demonstrated a deep commitment to teaching and mentorship in academia. His roles as a lecturer and assistant director have honed his skills in educating and guiding students, particularly in Physics and solar energy applications. His academic guidance has fostered a generation of students prepared to tackle the challenges in applied science.

Awards and Honors 🏆

Dr. Ishaq’s outstanding contributions have been recognized with several awards and scholarships, such as:

  • Top Poster Presenter Award at the International Conference on Next Generation Energy Technologies (2016)
  • Academic Excellence Award and Graduate Honor Award at Huazhong University of Science and Technology (2019)
  • Ph.D. Scholarship from the Chinese Scholarship Council (2016-2019)

Legacy and Future Contributions 🌟

As a dedicated researcher and teacher, Dr. Ishaq’s future contributions are poised to continue impacting the fields of semiconductor physics and solar energy. His research on novel materials for energy applications positions him to make significant strides in sustainable energy solutions, and his commitment to teaching will inspire future generations of scientists and engineers to innovate and contribute to global sustainability.

Publications Top Notes

Introducing atomistic dynamics at van der Waals surfaces for enhancing the thermoelectric performance of layered Bi0.4Sb1.6Te3

  • Authors: Adil Mansoor; Bushra Jabar; Syed Shoaib Ahmad Shah; Muhammad Sufyan Javed; Tayyaba Najam; Muhammad Ishaq; Shuo Chen; Fu Li; Xiao-Lei Shi; Yue-Xing Chen et al.
    Journal: Energy & Environmental Science
    Year: 2025

High-performance flexible Sb₂Se₃ thin-film photodetector for tunable color imaging and wearable physiological monitoring applications

  • Authors: Shuo Chen; Hong-Bo Li; Yi Fu; Guo-Qiang Liu; Muhammad Ishaq; Jun Luo; Jian-Min Li; Bo Che; Jing-Ting Luo; Liming Ding et al.
    Journal: Nano Research
    Year: 2025

Suppressing weak-light voltage attenuation in Sb₂S₃ indoor photovoltaics using Li-doped TiO₂ layer

  • Authors: Kefei Wu; Hui Deng; Xinxin Feng; Jinwei Hong; Guidong Wang; Muhammad Ishaq; Caixia Zhang; Qiao Zheng; Weihuang Wang; Jionghua Wu et al.
    Journal: Nano Research
    Year: 2025

A Deep Dive into Cu₂ZnSnS₄ (CZTS) Solar Cells: A Review of Exploring Roadblocks, Breakthroughs, and Shaping the Future

  • Authors: Shah, Usman Ali; Wang, Ao; Ullah, Muhammad Irfan; Ishaq, Muhammad; Shah, Imtiaz Alam; Zeng, Yiyu; Abbasi, Misbah Sehar; Umair, Muhammad Ali; Farooq, Umar; Liang, Guang-Xing et al.
    Journal: Small
    Year: 2024

A novel Se-diffused selenization strategy to suppress bulk and interfacial defects in Sb₂Se₃ thin film solar cell

  • Authors: He, Haiying; Zhong, Yiming; Zou, Wanying; Zhang, Xinyu; Zhao, Jun; Ishaq, Muhammad; Liang, Guangxing
    Journal: Surfaces and Interfaces
    Year: 2024

 

Ahmed A. Aboud | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Ahmed A. Aboud | Experimental methods | Best Researcher Award

Lecturer in department of Physics, Faculty of Sicence, BSU, Egypt

Dr. Ahmed Abdel-Nagy Aboud Moustafa is a dedicated Lecturer in the Department of Physics at the Faculty of Science, Beni-Suef University (BSU), Egypt. He holds a PhD in Physics, specializing in Surface Antireflection and Protection for Photovoltaic (PV) Systems, from Yerevan State University, Armenia, earned through a full scholarship. His academic journey has been marked by excellence and a strong commitment to advancing physics and material science.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Aboud’s academic career began with exceptional achievements. He graduated top of his class with a B.Sc. in Physics from Cairo University, Beni-Suef branch, in 2000. He continued to excel in his studies, securing a M.Sc. in Physical Physics in 2008. During his early years, Dr. Aboud’s interest was sparked by thin film deposition and its applications in materials science, which later influenced his research direction.

Professional Endeavors 💼

Dr. Aboud’s professional career includes extensive research experience in thin film deposition, nano-material preparation, and solar energy applications. He has worked on various cutting-edge projects involving spray pyrolysis, chemical vapor deposition, and aerosol-assisted techniques. His work has spanned across several international collaborations, including SolarNex Co. in Pakistan and EMONIX in the USA. His participation in various projects, such as the 10kW rooftop grid-connected PV system, showcases his contribution to sustainable energy technologies.

Contributions and Research Focus 🔬

Dr. Aboud has made substantial contributions to the field of material science and physics, particularly in thin film technologies and nanomaterials. His primary research focus lies in the preparation of high-quality thin films using cost-effective chemical-based techniques like spray pyrolysis, chemical bath deposition, and aerosol-assisted chemical vapor deposition. His work aims to enhance the performance of solar cells and develop novel nano-structured materials for energy applications.

Additionally, his research interests extend to green chemistry, where he explores eco-friendly capping agents for nanomaterial synthesis and the development of dual metal sulfide precursors for solar absorber applications.

Impact and Influence 🌍

Dr. Aboud’s research impact is evident through his numerous publications in renowned journals and his collaborations with international institutions. His work on doped ZnO thin films and photoelectrochemical activity is highly regarded in the field of solar energy and nano-materials. He has also contributed to functional food development, as seen in his work on fortified biscuits with iron nanoparticles. Through his research, Dr. Aboud is influencing sustainable technologies and renewable energy solutions on a global scale.

Academic Citations 📚

With numerous research papers published in prominent journals like Physica Scripta, Journal of Materials Science, and Materials Research Express, Dr. Aboud has achieved significant academic recognition. His work on Ni doping in ZnO films and Cu-doped CdS solar absorbers is widely cited by researchers in the fields of semiconductors and photovoltaics. This high citation count reflects his contributions to advancing material science and energy-efficient technologies.

Research Skills 🧪

Dr. Aboud is proficient in various research methodologies, including:

  • Thin film deposition techniques (spray pyrolysis, chemical bath deposition)
  • Nano-material preparation (chemical bath, microwave techniques, and hot injection)
  • Characterization of materials using state-of-the-art techniques such as:
    • X-ray diffraction (XRD)
    • Atomic force microscopy (AFM)
    • Scanning electron microscopy (SEM)
    • Transmission electron microscopy (TEM)
    • Optical properties, DC conductivity
    • X-ray photoelectron spectroscopy (XPS)
    • Fourier-transform infrared spectroscopy (FT-IR)

These skills have been critical in his ability to contribute to innovative solar technologies, functional food applications, and advanced material development.

Teaching Experience 🏫

As an educator, Dr. Aboud has delivered comprehensive courses to undergraduate and postgraduate students at BSU. His teaching portfolio includes General Physics, Semiconductor Devices, Modern Physics, and Thin Film Physics, among others. Dr. Aboud’s courses emphasize practical knowledge and hands-on experience, aligning with his passion for scientific discovery and education. His graduate-level courses, including Energy Harvesting and Thin Film Technology, inspire the next generation of physicists.

Awards and Honors 🏆

Throughout his career, Dr. Aboud has been recognized with multiple awards and honors. His research excellence has earned him funding from the Egyptian Academy of Science and international collaborations with institutions like Ohio State University. His academic achievements are testament to his commitment to advancing the field of material science and renewable energy technologies.

Legacy and Future Contributions 🔮

Looking forward, Dr. Aboud aims to continue his research on cost-effective thin film techniques for solar energy applications. He also plans to further develop green nanomaterials for sustainable technologies. His future projects will focus on innovating dual-metal sulfide precursors, improving photoelectrochemical systems, and enhancing energy efficiency. Dr. Aboud’s legacy will be one of dedication to science, advancing renewable energy solutions, and fostering scientific education.

Publications Top Notes

Effect of different metallic doping elements on the physical properties of iron oxide thin films

  • Authors: Ahmed A. Aboud, Zinab S. Matar, Mona Mohaseb
    Journal: Physica Scripta
    Year: 2024

Physical properties of La:ZnO thin films prepared at different thicknesses using spray pyrolysis technique

  • Authors: Norah A. Alsaiari, Abanoub A. Awad, Motaz F. Ismail, Ahmed A. Aboud
    Journal: Physica Scripta
    Year: 2024

Tailoring physical properties and electrochemical performance of polyaniline thin films via chemical bath deposition

  • Authors: Mohamed S. Gadallah, Ahmed A. Aboud, H.M. Abd El-Salam
    Journal: Optical Materials
    Year: 2024

Properties of spray pyrolysis deposited Zr-doped ZnO thin films and their UV sensing properties

  • Authors: Aeshah Alasmari, Ramy A. Abd-Elraheem, Ahmed A. Aboud, Motaz Ismail
    Journal: Physica Scripta
    Year: 2024

Investigating the influence of yttrium doping on physical properties of ZnO thin films deposited via spray pyrolysis

  • Authors: Aeshah Alasmari, Abanoub A. Awad, Ahmed A. Aboud
    Journal: Optical Materials
    Year: 2024