Sang-Wook Han | Experimental methods | Excellence in Research

Prof Dr. Sang-Wook Han | Experimental methods | Excellence in Research

Professor at Jeonbuk National University, South Korea

Professor Sang-Wook Han is a distinguished academic in the field of Physics Education at Jeonbuk National University, South Korea. With a profound commitment to advancing nanoscience and condensed matter physics, he has significantly contributed to the understanding of microstructural properties of nanomaterials. His collaborative spirit is evident through his roles in various scientific associations, where he fosters research and education. With over 100 publications and numerous invited lectures, Professor Han is recognized as a leading figure in his field, inspiring both students and peers alike.

🎓Profile

📚 Early Academic Pursuits

Professor Sang-Wook Han began his academic journey with a B.S. in Physics from Kyungpook National University in February 1989. His passion for physics led him to the University of Missouri-Columbia, where he earned his Ph.D. in Physics in December 1999. This foundational education equipped him with the necessary knowledge and skills to excel in the field of condensed matter physics and nanoscience.

💼 Professional Endeavors

Since August 2003, Professor Han has held the position of Professor in the Department of Physics Education at Jeonbuk National University. His extensive career includes roles as a Research Assistant at the University of Missouri-Columbia, a Research Associate at the University of Washington, and a Postdoctoral Physicist at Lawrence Berkeley National Laboratory. Additionally, he has served as a visiting scholar multiple times at the X-ray Science Division of Argonne National Laboratory, enhancing his expertise in advanced research techniques.

🔬 Contributions and Research Focus

Professor Han has made significant contributions to the fields of condensed matter physics, nanoscience, and nanotechnology. His research focuses on the microstructural properties of various nanomaterials, including semiconductors, magnetic materials, superconductors, and spintronics. Utilizing techniques such as X-ray Absorption Fine Structure (XAFS) and diffraction methods, he has published over 100 research papers and delivered more than 30 invited lectures, showcasing his influence in the scientific community.

🌍 Impact and Influence

As a leader in the academic community, Professor Han serves as the Chair of the Korean XAFS Society and the Vice-chair of the Korea Proton Acceleration Users Association. His role as a board member of the Korean Synchrotron Radiation User Association highlights his commitment to advancing research and education in the field. He has also contributed to the academic landscape as a guest editor for the International Journal of Nanoscience and Nanotechnology.

📜 Academic Cites

Throughout his career, Professor Han’s impactful research has been widely cited in the academic community, reinforcing his status as a key contributor in physics and nanotechnology. His work has paved the way for advancements in understanding the properties and applications of various nanomaterials, influencing both academic research and practical applications.

🛠️ Technical Skills

Professor Han possesses a diverse skill set, including expertise in XAFS and diffraction techniques, MOCVD, and sputtering deposition for crystal growth. His technical proficiency enables him to conduct advanced experiments and contribute valuable insights into the properties of nanomaterials.

👩‍🏫 Teaching Experience

As a dedicated educator, Professor Han has played a vital role in shaping the future of physics education. He has served as the Chair of the Division of Science Education at Jeonbuk National University and has held various leadership positions, including Head of the Physics Education Department. His commitment to teaching is reflected in his ability to inspire and mentor students, fostering a new generation of physicists.

🌟 Legacy and Future Contributions

Professor Han’s legacy lies in his extensive research, influential publications, and dedication to education. His contributions to the fields of condensed matter physics and nanotechnology will continue to resonate within the academic community. Looking ahead, he aims to further explore innovative research avenues and expand his influence in both education and scientific research, ensuring a lasting impact on the discipline.

📖Publication Top Notes

Interfacial structures of Pt nanoparticles and transition-metal-oxide supports
  • Authors: Eun-Suk Jeong; In-Hui Hwang; Sang-Wook Han
    Publication Year: 2024
    Citations: Not available yet (new publication)
Comparison of Fourier-transformed and Wavelet-transformed EXAFS
  • Authors: Eun-Suk Jeong; Sang-Wook Han
    Publication Year: 2024
    Citations: Not available yet (new publication)
Epitaxial growth of oriented CoO films by radio-frequency sputtering deposition
  • Authors: In-Hui Hwang; Liliana Stan; Cheng-Jun Sun; Sang-Wook Han
    Publication Year: 2023
    Citations: Not available yet (recent publication)
AXEAP: a software package for X-ray emission data analysis using unsupervised machine learning
  • Authors: In-Hui Hwang; Mikhail A. Solovyev; Sang-Wook Han; Maria K. Y. Chan; John P. Hammonds; Steve M. Heald; Shelly D. Kelly; Nicholas Schwarz; Xiaoyi Zhang; Cheng-Jun Sun
    Publication Year: 2022
    Citations: Not available yet (recent publication)
 Dispersion and stability mechanism of Pt nanoparticles on transition-metal oxides
  • Authors: Eun-Suk Jeong; In-Hui Hwang; Sang-Wook Han
    Publication Year: 2022
    Citations: Not available yet (recent publication)

 

Evangelia Tsampali | Experimental methods | Best Researcher Award

Ms. Evangelia Tsampali | Experimental methods | Best Researcher Award

Researcher at Aristotle University of Thessaloniki, Greece

Evangelia Tsampali is a civil engineer and researcher from Greece, currently pursuing her PhD at the Aristotle University of Thessaloniki. With a robust background in civil engineering and materials science, she specializes in the development of self-healing concrete, aiming to enhance sustainability in construction practices. Fluent in Greek, English, Russian, and Spanish, she has actively contributed to various research projects and international conferences, showcasing her commitment to innovation in the field.

🎓Profile

🌟 Early Academic Pursuits

Evangelia Tsampali embarked on her academic journey at Aristotle University of Thessaloniki, where she earned a Diploma in Civil Engineering (2007-2013). She pursued two Master’s degrees: one in Physics and Technology of Materials (2014-2015) and another in Environmental Protection and Sustainable Development (2014-2017). Currently, she is a Ph.D. candidate focused on “Self-Healing in Cementitious Materials,” illustrating her commitment to innovative research in civil engineering.

🏗️ Professional Endeavors

Evangelia has over five years of hands-on research experience. Her work spans various projects, including the utilization of recycled materials in construction and the development of self-healing concrete. She has collaborated with multiple organizations, including a Short Term Scientific Mission at Politecnico di Milano, showcasing her commitment to advancing civil engineering practices.

🔬 Contributions and Research Focus

Her research primarily focuses on enhancing the properties of cementitious materials through self-healing technologies. She has investigated the impact of crystalline admixtures and alternative materials like perlite and hemp fibers, contributing significantly to sustainable construction methods. Her work is vital for addressing challenges in durability and environmental impact in civil engineering.

📊 Impact and Influence

Evangelia’s research has garnered attention in the academic community, evidenced by numerous conference presentations and published journal articles. She actively participates in international conferences, sharing insights on innovative materials and techniques, influencing peers and upcoming researchers in the field.

📚 Academic Cites

Her notable publications include articles in the Journal of Building Engineering and Proceedings in Civil Engineering, where she explores the properties and applications of novel materials. Her work has been cited by fellow researchers, emphasizing its relevance and contribution to the field.

⚙️ Technical Skills

Evangelia is proficient in a range of technical skills, including AutoCAD, 3D modeling software, and data management. Her expertise in research protocols and laboratory techniques allows her to conduct thorough and innovative investigations in her projects.

👩‍🏫 Teaching Experience

In addition to her research, Evangelia has been involved in educational initiatives, sharing her knowledge of civil engineering materials and sustainable practices with students. Her teaching experience complements her research, fostering a new generation of engineers.

🏆 Legacy and Future Contributions

Recognized with several awards, including a full scholarship for her Ph.D. studies, Evangelia’s contributions to civil engineering are just beginning. Her focus on sustainable materials and innovative construction techniques positions her to make a lasting impact on the industry, promoting resilience and sustainability in infrastructure development.

📖Publication Top Notes

 Assessment of perlite by-product as pozzolanic material in cement pastes
  • Authors: E.C. Tsardaka; E. Tsampali; M. Stefanidou
    Publication Year: 2024
The Contribution of Nano-Alumina to Ultra-High-Performance Cement-Based Systems
  • Authors: Eirini-Chrysanthi Tsardaka; Evangelia Tsampali; Maria Stefanidou
    Publication Year: 2024
 Effect of hemp fibers and crystalline admixtures on the properties and self-healing efficiency of lime and clay-based mortars
  • Authors: Tsampali Evangelia; Vitta Ioanna; Maria Stefanidou
    Publication Year: 2024
The role of crystalline admixtures in the long-term healing process of fiber-reinforced cementitious composites (FRCC)
  • Authors: Evangelia Tsampali; Maria Stefanidou
    Publication Year: 2022
 Techniques for recording self‐healing efficiency and characterizing the healing products in cementitious materials
  • Authors: Maria Stefanidou; Evangelia Tsampali; Georgios Karagiannis; Stamatios Amanatiadis; Andreas Ioakim; Spyridon Kassavetis
    Publication Year: 2021