Bhakti Pada Das | Experimental methods | Best Researcher Award

Dr. Bhakti Pada Das | Experimental methods | Best Researcher Award

Ex-Student, Indian Institute of Technology, Kharagpur | India

Dr. Bhakti Pada Das is a distinguished physicist with expertise in the structural, dielectric, electrical, and magnetic properties of various materials. He completed his B.Sc. (Honours) in Physics from Calcutta University in 1981, followed by his M.Sc. in Physics from IIT Kharagpur in 1984. He earned his Ph.D. in Physics from Vidyasagar University, Midnapore in 2006. With over three decades of academic and research experience, Dr. Das has made significant contributions to material science, particularly in ferroelectric systems and nanotechnology.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Das began his academic journey at Calcutta University, where he obtained his B.Sc. in Physics (Honours), followed by an advanced M.Sc. from IIT Kharagpur, India. His academic interests during this time laid the foundation for his doctoral work. He pursued his Ph.D. research at Vidyasagar University, which focused on the structural, dielectric, and electrical properties of rare-earth-modified Pb(SnTi)O3 ferroelectric systems. This research work set the stage for his later contributions in material science.

Professional Endeavors 🔬

Dr. Das has worked on various significant research projects throughout his career. His expertise spans areas such as dilute magnetic semiconductors, nanofluid technology, and satellite communication. Notably, his work in Ka band propagation experiments at the Indian Institute of Technology, Kharagpur, aimed at improving satellite communication in tropical regions, showcased his innovative approach to solving real-world problems. Additionally, his hands-on experience with the development of NdFeB-based magnets further highlights his comprehensive skill set in experimental physics.

Contributions and Research Focus 🧠

Dr. Das’s research focus includes the study of ferroelectric materials, dilute magnetic semiconductors (DMS), magnetic nanofluids, and the thermal properties of materials. His research on Pb(SnTi)O3 ceramics, In2O3-based DMS, and Sm-Co nanoparticles offers in-depth insights into the electrical and magnetic properties of these materials, crucial for modern electronics and nanotechnology. His work on the thermal conductivity of magnetic nanofluids has also led to advancements in the field of heat transfer and energy efficiency.

Impact and Influence 🌍

Dr. Das’s work has had a significant impact on the fields of material science and nanotechnology. His publications in high-impact journals like Materials Science and Engineering: B, Journal of Electronic Materials, and Journal of Thermal Analysis and Calorimetry have influenced future research in ferroelectric materials, magnetic semiconductors, and thermal management systems. His innovative research techniques and contributions are being widely cited, contributing to the growth of nanotechnology and its real-world applications.

Academic Citations 📖

Dr. Bhakti Pada Das has been widely cited in academic literature, particularly in the fields of ferroelectric materials and nanomaterials. With a diverse publication record, his research has garnered attention in leading scientific journals, making him a recognized scholar in material science. His most recent work on Fe-doped In2O3 nanoparticles in Materials Science and Engineering: B is one of his most cited articles, reflecting his influence in advancing knowledge in the domain of magnetic semiconductors.

Research Skills 🛠️

Dr. Das possesses a vast skill set in material preparation techniques, such as solid-state reaction methods, sol-gel processes, and arc melting & melt spinning for alloy preparation. His expertise in structural analysis using XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy) enables him to conduct high-level material characterization. Additionally, he is proficient in magnetic and electrical property studies, particularly for dilute magnetic semiconductors and ferroelectric ceramics.

Teaching Experience 👨‍🏫

As an academic mentor, Dr. Das has taught a wide range of undergraduate and postgraduate courses in physics, particularly in materials science. His experience in guiding students through complex experimental setups and theoretical concepts makes him an outstanding educator. His ability to translate his advanced research knowledge into accessible teachings has inspired many future scientists and researchers.

Legacy and Future Contributions 🌱

Dr. Das’s legacy lies in his dedication to advancing knowledge in the field of material science. He is expected to continue contributing to the study of novel materials, particularly in nanotechnology and energy-efficient systems. His future research may focus on emerging fields like quantum materials and nanoelectronics, areas where his experience in dilute magnetic semiconductors and ferroelectric materials can be applied to push the boundaries of modern technology. Dr. Das’s continued work will undoubtedly impact both academic research and real-world applications, contributing to the development of sustainable technologies and cutting-edge materials that can shape the future of electronics, communication, and energy systems.

Publications Top Notes

Structural, magnetic and optical characterization of 5 atomic % Fe doped In2O3 dilute magnetic semiconducting nanoparticles

  • Authors: Bhakti Pada Das, Tapan Kumar Nath, Sourav Mandal, Ashes Shit, Palash Nandi, Subhasis Shit, Bishnu Chakraborty, Panchanan Pramanik
    Journal: Materials Science and Engineering: B
    Year: 2025

Magnetic and Optical Properties of Dilute Magnetic Semiconducting (In0.9Mn0.1)2O3 Nanoparticles

  • Authors: Bhakti Pada Das, Tapan Kumar Nath, Sourav Mandal, Ashes Shit, Bishnu Chakraborty, Subhasis Shit, Sananda Das, Palash Nandi, Panchanan Pramanik
    Journal: Journal of Electronic Materials
    Year: 2023

Structural, Microstructural, and Electrical Properties Study of Pb(Sn0.45Ti0.55)O3 Ceramics

  • Authors: Bhakti Pada Das, Bhabani Sankar Patnaik, Tanmaya Jena, Sailabhama Nayak, Geetanjali Nayak, Krishnamayee Bhoi, Uttam Sahu, Prasanta Kumar Mahapatra, Ram Naresh Prasad Choudhary, Subrata Karmakar, Hari Sankar Mohanty
    Journal: ECS Journal of Solid State Science and Technology
    Year: 2024

Room temperature ferromagnetism in chemically synthesized dilute magnetic semiconducting (In0.95Mn0.05)2O3 nanoparticles

  • Authors: Bhakti Pada Das, Akash Oraon, Tapan Kumar Nath, Tapasendra Adhikary, Shampa Aich, Panchanan Pramanik
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2020

Impact of magnetic field on the thermal properties of chemically synthesized Sm-Co nanoparticles based silicone oil nanofluids

  • Authors: Akash Oraon, Bhakti Pada Das, Monisha Michael, Tapasendra Adhikary, Purbarun Dhar, Shampa Aich, Sudipto Ghosh
    Journal: Journal of Thermal Analysis and Calorimetry
    Year: 2021

 

Jia Guo | Experimental methods | Best Researcher Award

Prof. Jia Guo | Experimental methods | Best Researcher Award

University of South China | China

Jia Guo, Ph.D., is an accomplished academic and researcher specializing in optical engineering, with a deep focus on the development of photonic and photoelectronic devices. He currently serves as a Professor at the School of Mathematics and Physics at the University of South China in Hengyang, China. Over the years, his research has contributed significantly to the fields of 2D materials and nonlinear optics, exploring their potential in groundbreaking technologies like ultrafast lasers and photodetectors.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. JiaGuo’s academic journey began with a Bachelor’s degree in Physics from Liaocheng University, followed by a Master’s in Optics from Shandong Normal University. His passion for optical science led him to pursue a Ph.D. in Optical Engineering at Shenzhen University, where he conducted advanced research under the guidance of Professor Han Zhang. It was during these formative years that he developed a strong foundation in optics, setting the stage for his future endeavors.

Professional Endeavors 💼

Dr. JiaGuo has made significant strides in both his academic and professional careers. Since 2023, he has been a Professor at the University of South China, where he continues to mentor and inspire the next generation of scientists. Prior to that, he served as a Postdoctoral Fellow at the College of Electronics and Information Engineering, Shenzhen University, where he worked closely with leading professors in the field, including Prof. Wenlong He and Prof. Han Zhang. His professional background also includes key roles in research and development in photonics and optics.

Contributions and Research Focus 🔬

Dr. JiaGuo’s research contributions are centered around the development of photonic devices like ultrafast lasers, photodetectors, and modulators, with particular emphasis on 2D materials such as graphene and black phosphorus. He has explored nonlinear optical properties, saturable absorption, and optical carrier dynamics through cutting-edge femtosecond laser systems. Recently, his focus has shifted to the mid-infrared and terahertz ultrafast lasers, with applications in metasurfaces and nonlinear optical effects. His work is advancing new ways to manipulate light and optimize photonic applications.

Academic Cites 📚

Dr. JiaGuo’s work has received international recognition through highly cited papers, including those published in prominent journals like Laser Photonics Review, Advanced Optical Materials, and Nanoscale. His contributions to these journals have solidified his standing as a key figure in the study of nonlinear optics and 2D materials.

Research Skills 🛠️

Dr. JiaGuo is skilled in several advanced research techniques and tools, such as COMSOL, Z-scan, and pump-probe experiments. He is also proficient in 2D material preparation techniques, including CVD (chemical vapor deposition) and liquid-phase exfoliation. His extensive technical skillset allows him to investigate the optical properties and ultrafast dynamics of new materials with precision.

Teaching Experience 🧑‍🏫

As a Professor at the University of South China, JiaGuo imparts his knowledge of optics, photonics, and 2D materials to students. His experience as a mentor and educator enhances his ability to foster the next generation of optical engineers and photonics researchers.

Awards and Honors 🏆

Dr. JiaGuo’s contributions to the field of optics have been recognized through a variety of prestigious awards. Among them are the National Scholarship for Master Postgraduates (2017), the Tencent Founder Innovation Scholarship (2020), and the Student Optical Award of the Wang Daheng Optical Award from the China Optical Society (2021). These accolades highlight his excellence both in research and academic performance.

Legacy and Future Contributions 🌟

Dr. JiaGuo’s legacy is rooted in his innovative research and his role as a mentor in the optical sciences community. As he continues to push the boundaries of metasurfaces and nonlinear optics, he is likely to shape the future of photonic technologies. His future work promises to influence the development of next-generation laser systems, with applications in industries ranging from medical imaging to telecommunications.

Publications Top Notes

Optimization of Erbium-Doped Fiber to Improve Temperature Stability and Efficiency of ASE Sources

  • Authors: Jia Guo, Hao Zhang, Wenbin Lin, Wei Xu
    Journal: Photonics
    Year: 2025

Nonlinear Optical Response of Niobium Telluride and Its Application for Demonstrating Pulsed Fiber Lasers

  • Authors: X. Shang, Y. Zhang, T. Li, H. Zhang, X. Zou, S. Wageh, A.A. Al-Ghamdi, et al.
    Journal: Journal of Materiomics
    Year: 2024

Broadband Nonlinear Response and Ultrafast Photonics Applications in Few-Layer MBene

  • Authors: Jia Guo, Hao Y., A.V. Kuklin, et al.
    Journal: ACS Photonics
    Year: 2023

Ta2C MXene: Nonlinear Optical Properties and Application in Femtosecond Fiber Laser

  • Authors: Jia Guo, Z. Liu, S. Wageh, et al.
    Journal: Optics and Laser Technology
    Year: 2023

Niobium Telluride Absorber for a Mode-Locked Vector Soliton Fiber Laser

  • Authors: X.X. Shang, N.N. Xu, Jia Guo, et al.
    Journal: Science China: Physics, Mechanics and Astronomy
    Year: 2023