Hamid Shahivandi | Computational Methods | Editorial Board Member

Dr. Hamid Shahivandi | Computational Methods | Editorial Board Member

Shahed University | Iran

Hamid Shahivandi, Ph.D., is a passionate physicist specializing in computational materials science with a focus on perovskite solar cells. Based in Tehran, Iran, he has over a decade of academic experience as a researcher, lecturer, and laboratory supervisor. His innovative research combines precision and creativity, positioning him as a dedicated contributor to the fields of condensed matter physics and semiconductor technology.

Profile

Scopus

Orcid

🎓 Early Academic Pursuits

Dr. Shahivandi embarked on his academic journey with a Bachelor’s in Physics from Lorestan University (2004–2008). He pursued further specialization in Solid-State Physics, completing his Master’s (2008–2011) and Ph.D. (2016–2020) at K. N. Toosi University of Technology, Tehran. His doctoral dissertation focused on the temperature-dependent performance of CH3NH3PbI3 perovskite solar cells, demonstrating his commitment to solving real-world challenges in renewable energy technologies.

đź’Ľ Professional Endeavors

Dr. Shahivandi has been an integral part of Shahed University since 2014, serving as both a Laboratory Supervisor and a Lecturer. His teaching portfolio spans foundational and advanced topics, including General Physics, Electricity and Magnetism, and Physical Properties of Materials. As a Teaching Assistant at K. N. Toosi University, he gained early exposure to educational excellence, fostering his skills in mentorship and pedagogy.

🔬 Contributions and Research Focus

Dr. Shahivandi’s research interests are deeply rooted in computational physics, with key contributions in:

  • Perovskite Solar Cells: Developing models to optimize performance and minimize degradation.
  • Carbon Nanotubes: Investigating catalytic growth mechanisms for double-walled carbon nanotubes.
  • Crystals: Studying the growth mechanisms of Calcium Fluoride and Germanium crystals.
    His theoretical and computational methodologies have led to several impactful publications in IEEE Journal of Photovoltaics and Solar Energy Materials & Solar Cells.

🌍 Impact and Influence

Dr. Shahivandi’s work on temperature effects and degradation mechanisms in perovskite solar cells has paved the way for more efficient renewable energy technologies. His insights into semiconductors and nanostructures have influenced peers and inspired collaborative research. His methodological rigor ensures that his findings resonate across academic and industrial communities.

đź›  Research Skills

Dr. Shahivandi excels in:

  • Computational Tools: Expertise in Molecular Dynamics Simulation and Density Functional Theory (DFT).
  • Analytical Techniques: Proficiency with Atomic Force Microscopy (AFM) and Vibrating-Sample Magnetometer (VSM).
  • Model Development: Skilled in mathematization and modeling of complex physical phenomena.
  • Project Management: Adept at leading and organizing multi-faceted research projects.

🏆 Awards and Honors

Dr. Shahivandi has been recognized for his scientific excellence and educational impact. His achievements include poster presentations at national nanoscience congresses and impactful research contributions published in leading journals.

🌟 Legacy and Future Contributions

Dr. Shahivandi’s legacy is marked by his dedication to advancing renewable energy technologies and materials science. Looking ahead, he aims to explore novel nanomaterials for energy applications and foster global collaborations to tackle pressing challenges in sustainable development.

Publication top notes

Temperature dependence of iodine vacancies concentration in CH3NH3PbI3 perovskite: A theoretical analysis

  • Authors: Hamid Shahivandi, Mohamadhosein Nosratjoo
    Journal: Physica B: Condensed Matter
    Year: 2024

Theory of light-induced degradation in perovskite solar cells

  • Authors: Hamid Shahivandi
    Journal: (No journal name provided)
    Year: 2020

Study of the effect of temperature on light-induced degradation in methylammonium lead iodine perovskite solar cells

  • Authors: Hamid Shahivandi, Majid Vaezzadeh, Mohammadreza Saeidi
    Journal: Solar Energy Materials and Solar Cells
    Year: 2020

Iodine Vacancy Formation Energy in CH3NH3PbI3 Perovskite

  • Authors: Hamid Shahivandi, Majid Vaezzadeh, Mohammadreza Saeidi
    Journal: IEEE Journal of Photovoltaics
    Year: 2020

Theoretical Study of Effective Parameters in Catalytic Growth of Carbon Nanotubes

  • Authors: Hamid Shahivandi, Majid Vaezzadeh, Mohammadreza Saeidi
    Journal: physica status solidi (a)
    Year: 2017

 

 

 

Qingguo LĂĽ | Computational Methods | Best Researcher Award

Assoc. Prof. Dr. Qingguo LĂĽ | Computational Methods | Best Researcher Award

Chongqing University | China

Dr. Qingguo LĂĽ is currently an Associate Professor at the College of Computer Science, Chongqing University, China. With a Ph.D. in Computational Intelligence and Information Processing from Southwest University, his academic journey has been marked by excellence. His work primarily focuses on distributed control and optimization in networked systems, especially in areas involving machine learning, cooperative control, and smart grids.

👨‍🎓Profile

Scopus

🎓 Early Academic Pursuits

Dr. LĂĽ began his academic journey with a Bachelor’s degree in Measurement Control Technology and Instrument from Anhui University of Technology, before advancing to a Master’s degree in Signal and Information Processing at Southwest University. His early academic years were dedicated to mastering core concepts of computational intelligence and information processing, laying the foundation for his later groundbreaking research.

đź’Ľ Professional Endeavors

Throughout his career, Dr. LĂĽ has held significant positions, including being a Research Assistant at the Texas A&M University Science Program, Qatar, where he contributed to the research in networked control systems, distributed computing, and smart grids. Following this, he transitioned to his postdoctoral research at Chongqing University, collaborating with Prof. Shaojiang Deng on topics like cooperative control, distributed optimization, and machine learning. His role as an Associate Professor has enabled him to further deepen his research and lead academic projects.

🔬 Contributions and Research Focus

Dr. LĂĽ’s research is deeply embedded in solving real-world problems using distributed optimization algorithms across networked systems. Notable contributions include the development of asynchronous algorithms for decentralized resource allocation, privacy protection algorithms, and the design of algorithms for economic dispatch in smart grids. His research focus is centered on improving distributed optimization through stochastic algorithms, cooperative control, and networked machine learning.

📚 Academic Cites

Dr. LĂĽ’s research has been extensively cited in major journals, indicating the high impact of his work. For example, his paper in IEEE Transactions on Cybernetics (2021) has garnered attention for its privacy-masking stochastic algorithms, highlighting his role in advancing the field of privacy in decentralized systems. His consistent contributions to top-tier journals underscore his prominence as a thought leader in computational intelligence and information processing.

đź›  Research Skills

Dr. LĂĽ possesses advanced skills in developing decentralized algorithms, with expertise in distributed optimization, privacy protection, and machine learning for networked systems. His ability to design efficient algorithms that are not only theoretically sound but also computationally feasible has enabled the practical deployment of these methods in diverse real-world applications, including energy optimization and economic dispatch in smart grids.

🏫 Teaching Experience

As an Associate Professor, Dr. LĂĽ plays an active role in shaping the next generation of researchers and engineers. His teaching focuses on distributed control systems, networked optimization, and machine learning, ensuring that students are well-versed in the latest techniques and applications of computational intelligence. His involvement in academic mentorship and research supervision is highly regarded, helping foster a collaborative and innovative research environment.

🏆 Legacy and Future Contributions

Dr. Lü’s career is already distinguished by his extensive research publications, patents, and contributions to academic growth. His research continues to shape the development of distributed algorithms for complex networks, offering solutions that are highly relevant in today’s rapidly evolving technological landscape. Looking ahead, he aims to expand his work on energy optimization, privacy protection, and networked control systems to tackle emerging challenges in fields like smart cities and autonomous systems.

Publications Top Notes