Dr. Xiaoying Han | High Energy Density Physics | Best Researcher Award

Dr. Xiaoying Han | High Energy Density Physics | Best Researcher Award

Institute of Applied Physics and Computational Mathematics  | China

Dr. Han Xiaoying has made significant contributions to the fields of atomic and molecular physics as well as high-energy density physics, with a consistent research record spanning nearly two decades. Her work covers a wide spectrum—from early studies on electron-impact excitation and oscillator strengths in atoms such as helium, sodium, and oxygen ions, published in leading journals like Physical Review A and Journal of Physics B, to the development of advanced simulation models for hot dense plasmas under non-local thermodynamic equilibrium (NLTE) conditions. She has been instrumental in proposing the MAICRM model for rapid plasma spectra simulation and has recently advanced the field through deep learning surrogate models to solve time-dependent NLTE absorption and emission spectra. In addition, her collaborations include pioneering research on x-ray source dynamics for in situ diffraction measurements and precise measurements of radiative albedo in hohlraum experiments, reported in high-impact journals such as Physics of Plasmas and Matter and Radiation at Extremes. Overall, Dr. Han’s research combines strong theoretical foundations with modern computational approaches, reinforcing her reputation as a leading expert in atomic physics and plasma diagnostics.

Profile:  Scopus | Google Scholar | Orcid

Featured Publications

"Deep learning surrogate models to solve time-dependent NLTE absorption and emission spectra"

"Self-consistent and precise measurement of time-dependent radiative albedo of gold based on specially symmetrical triple-cavity Hohlraum"

"Early-Time Harmonic Generation from a Single-Mode Perturbation Driven by X-Ray Ablation"

"An effective method to calculate the electron impact excitation cross sections of helium from ground state to a final channel in the whole energy region"

"MAICRM: A general model for rapid simulation of hot dense plasma spectra"

Quan Liu | Experimental methods | Best Researcher Award

Dr. Quan Liu | Experimental methods | Best Researcher Award

University of Science and Technology of China | China

👨‍🎓 Profile

Early Academic Pursuits 🎓

Quan Liu embarked on his academic journey with a strong foundation in material science, specifically focusing on smart materials. As a doctoral candidate, he has demonstrated an early commitment to advancing the field of materials science through innovative research. His research interests include nanomaterials and advanced composites, which are essential for developing cutting-edge applications in various industries. Throughout his academic career, Quan Liu has consistently shown a deep interest in both theoretical and practical aspects of material science.

Professional Endeavors and Research Focus 🔬

Currently, Quan Liu is pursuing his research in the field of smart materials at the University of Science and Technology of China (USTC), where his focus has been on nanoparticles and composites. His work on shear thickening suspensions and CNTs/STF/Kevlar composites has placed him at the forefront of smart material research. These materials are being developed for applications in wearable technology and safety equipment, making his work highly relevant for industries seeking advancements in impact resistance and flame retardancy.In his notable publications, such as “Probing the roles of surface characteristics of suspended nanoparticles in shear thickening suspensions” (2024) and “An impact-resistant and flame-retardant CNTs/STF/Kevlar composite” (2023), Liu demonstrates an impressive ability to address practical challenges through innovative material solutions.

Contributions and Impact 🔧

Quan Liu’s contributions have far-reaching implications in smart material design, particularly in developing materials that exhibit enhanced performance in extreme conditions. His work with CNTs (Carbon Nanotubes), shear thickening fluids, and Kevlar composites is paving the way for safer, more durable wearable technologies and advanced safety gear. The impact-resistant and flame-retardant properties of the composites he’s developing make them ideal for practical applications, including in military and aerospace industries, where material strength and safety are paramount.His research has already begun influencing industry standards and is contributing to the growth of advanced material applications. His focus on the surface characteristics of nanoparticles and the development of conductive properties in composites reflects his dedication to solving real-world problems through material innovation.

Academic Citations and Technical Skills 📚

Quan Liu’s work has been widely cited by his peers in prominent academic journals such as Applied Surface Science and Composites Part A. His publications on nanomaterial behavior in complex suspensions and impact-resistant composites demonstrate not only his technical expertise but also his ability to advance the field of material science. Liu’s technical skills in nanotechnology, composite material design, and material characterization have been key to his success in publishing highly impactful research.

Teaching Experience and Mentorship 👨‍🏫

As a doctoral candidate, Dr. Quan Liu has gained experience in mentoring and assisting in the teaching of undergraduate students at USTC. His ability to communicate complex scientific concepts is evident in his teaching, as well as his work in supervising student research. Liu’s role as a mentor will undoubtedly shape the next generation of material scientists.

Legacy and Future Contributions 🌍

Dr. Quan Liu’s legacy in the field of smart materials will be marked by his pioneering work on advanced composites and their practical applications in safety and wearable technology. His continued research is set to contribute significantly to the development of materials that can withstand extreme conditions, providing safety solutions for various high-risk industries. As Liu further explores the potential of nanomaterials and nanocomposites, his future contributions could revolutionize fields ranging from defense to healthcare.

Top Noted Publications

Probing the roles of surface characteristic of suspended nanoparticle in shear thickening suspensions
  • Authors: Liu, Q.; Liu, B.; Pan, Y.; Deng, H.; Gong, X.
    Journal: Applied Surface Science
    Year: 2024
An impact-resistant and flame-retardant CNTs/STF/Kevlar composite with conductive property for safe wearable design
  • Authors: Liu, B.; Liu, Q.; Pan, Y.; Hu, Y.; Gong, X.
    Journal: Composites Part A: Applied Science and Manufacturing
    Year: 2023