Zhang Xuexue | Experimental methods | Best Researcher Award

Ms. Zhang Xuexue | Experimental methods | Best Researcher Award

Student at Anhui University of Technology, China

Zhangxuexue is a dedicated graduate student at Anhui University of Technology, specializing in the field of absorbing materials. With a passion for materials science and nanotechnology, she has already made meaningful academic contributions during her academic journey. Her standout work involves the development of air/SiO₂@Fe/C yolk-shell nanospheres, which has been published in the prestigious Journal of Alloys and Compounds. Zhangxuexue demonstrates a strong foundation in research methodology and is positioning herself as a rising researcher in electromagnetic wave absorption materials.

Author Profile 

Scopus

Education

Zhangxuexue is currently pursuing her graduate studies at Anhui University of Technology, majoring in Materials Science and Engineering. Her coursework and academic training have provided her with a robust foundation in material synthesis, nanotechnology, and electromagnetic wave interaction. Throughout her studies, she has engaged in laboratory work and collaborative research projects, gaining hands-on experience in materials characterization techniques such as SEM, XRD, and VSM. The interdisciplinary curriculum at Anhui University of Technology has equipped her with both theoretical knowledge and practical skills in designing advanced functional materials. Her thesis work focuses on yolk-shell nanostructures for electromagnetic wave absorption, where she integrates material chemistry with electromagnetic theory.

Professional Experience

As a graduate researcher at Anhui University of Technology, Zhangxuexue has actively participated in experimental and theoretical research related to electromagnetic wave absorbing materials. Her most notable contribution is the successful design and fabrication of air/SiO₂@Fe/C yolk-shell nanospheres, which she co-developed and characterized using advanced techniques. This research resulted in a peer-reviewed publication, marking an early milestone in her academic career. She has also contributed to various lab-based projects involving the synthesis of hybrid materials, dielectric analysis, and the simulation of microwave absorption behavior. Through this work, she has developed a deep understanding of composite design, material interfaces, and the mechanisms behind wave attenuation.

Awards and Honors

While pursuing her graduate studies at Anhui University of Technology, Zhangxuexue has demonstrated academic excellence and research potential. She has received internal recognition from her department for outstanding performance in materials research and laboratory work. Her paper titled Construction of air/SiO₂@Fe/C yolk-shell nanospheres for boosted low-frequency electromagnetic wave absorption, published in the prestigious Journal of Alloys and Compounds, earned her commendation from faculty and peers alike.

Research Focus

Zhangxuexue’s research focus lies in the field of electromagnetic wave absorbing materials, with a specific interest in yolk-shell nanostructures and hybrid composites. Her work targets the development of lightweight, high-performance materials capable of attenuating low-frequency electromagnetic radiation. By manipulating composition, morphology, and interface properties, she aims to enhance the dielectric and magnetic losses of the absorbing materials. Her flagship study involves air/SiO₂@Fe/C yolk-shell nanospheres, designed to optimize internal scattering and impedance matching for efficient absorption. Beyond microwave absorption, she is also interested in the broader implications of these materials for stealth technology, electronic packaging, and electromagnetic interference (EMI) shielding.

Notable Publication

Construction of air/SiO₂@Fe/C yolk-shell nanospheres for boosted low-frequency electromagnetic wave absorption

Authors: Xuexue Zhang¹, Jing Wang¹, Weiwei Wang, Cao Wu, Chang Liu, Hailiang Deng, Liyan Wei, Weihua Gu, Wenbo Du, Yanning Chen, Hongwei Liu, Xun Cao

Journal: Journal of Alloys and Compounds

Year: 2025

Conclusion

Zhangxuexue is an emerging researcher in the field of electromagnetic wave absorbing materials, with a solid academic foundation and a growing record of scientific contribution. Her innovative work on yolk-shell nanostructures demonstrates both creativity and technical skill in material design. As a graduate student at Anhui University of Technology, she has shown strong potential for impactful research and future academic advancement. With a keen interest in nanomaterials and their real-world applications, Zhangxuexue aims to further explore advanced absorption mechanisms and scalable solutions for electromagnetic interference control. Her dedication and accomplishments position her as a promising talent in materials science.

 

 

Guangdi Zhao | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Guangdi Zhao | Experimental methods | Best Researcher Award

Associate professor at University of Science and Technology Liaoning | China

Guangdi Zhao is an associate professor and currently the associate dean of the School of Materials and Metallurgy. He serves as a doctoral supervisor with a strong academic foundation from Central South University, University of Chinese Academy of Sciences, and University of Science and Technology of China. Since beginning his career in 2017, Zhao has excelled in both research and academic leadership, building a reputable profile in materials science and engineering. His ongoing dedication to advancing metallurgical education and research reflects his commitment to scientific excellence and mentorship.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Zhao’s academic journey started with a bachelor’s degree in materials science and engineering at Central South University, followed by a master’s in materials science at the University of Chinese Academy of Sciences, and culminated in a Ph.D. at the University of Science and Technology of China. Throughout his studies, he developed a strong foundation in metallurgical processes and materials characterization, which laid the groundwork for his future research. His early training focused on innovative materials design and engineering, preparing him for an impactful academic and research career.

🔬 Professional Endeavors

Since July 2017, Zhao has grown from an early-career researcher to a respected academic leader, currently holding the position of associate dean and doctoral supervisor. He has led 4 vertical and 2 horizontal research projects funded by prestigious sources, including the National Natural Science Foundation of China and provincial science foundations. Zhao also hosts educational reform projects at his institution, illustrating his dual focus on research innovation and teaching improvement. His role expands beyond research to academic leadership and mentoring young scientists.

🛠️ Contributions and Research Focus

Zhao’s research concentrates on materials science and metallurgy, particularly in developing and optimizing metallurgical processes and materials properties. He has published 17 SCI/EI papers as first or corresponding author in internationally recognized journals such as Materials Science & Engineering A and Journal of Alloys and Compounds. His work addresses critical challenges in casting, forging, and metallographic skills, emphasizing defect control, microstructure analysis, and innovative alloy design. Zhao’s contributions push the boundaries of materials engineering for practical industrial applications.

🌟 Impact and Influence

Guangdi Zhao has significantly impacted the materials science community through his research, publications, and mentorship. His leadership on multiple funded projects reflects recognition of his scientific expertise. As an associate dean and committee member in Liaoning Province’s casting and forging industry, he influences both academic and industrial practices. His students’ success in national competitions and his role on editorial boards for “Special Steel” and “CHINA FOUNDRY” amplify his influence, promoting high standards in both research and teaching.

📚 Academic Citations

With 17 SCI/EI-indexed publications, Zhao maintains a strong academic presence, contributing original research to top materials science journals. His first-author and corresponding-author roles in highly cited papers demonstrate leadership in research output. These works are frequently cited by peers, reflecting the relevance and impact of his findings in metallurgical science. Zhao’s growing citation record highlights his ongoing contribution to advancing knowledge and provides a solid foundation for future collaborative research and scholarly influence.

🧰 Research Skills

Zhao possesses advanced expertise in materials characterization, microstructure analysis, and metallurgical process optimization. His skills include designing experimental protocols for alloy development, mastering metallographic techniques, and utilizing scientific methods to improve casting and forging processes. He is proficient in leading multidisciplinary research teams, securing funding, and translating fundamental research into practical industrial applications. Zhao’s technical acumen and problem-solving abilities are key to his success in both research and mentoring.

🎓 Teaching Experience

As an associate professor and doctoral supervisor, Zhao demonstrates strong commitment to education. He has won awards such as the Quality Classroom Award and provincial recognition for excellence in guiding students, particularly in metallographic skills competitions. Zhao actively develops and reforms educational programs, aiming to enhance student learning experiences in materials science. His hands-on mentorship helps students excel academically and competitively, fostering a new generation of researchers with robust technical and theoretical knowledge.

🏅 Awards and Honors

Zhao’s achievements have been recognized through numerous honors, including the prestigious “Hundred, Thousand, Thousand Talents Project” and “Ten Thousand” level candidate status in Liaoning Province. He has received the third prize in the Liaoning Provincial Teacher Teaching Innovation Competition, the Quality Classroom Award, and provincial-level Excellent Guidance Teacher accolades. Additionally, Zhao earned the third prize of Liaoning Provincial Natural Science Academic Achievement Award, underscoring his research excellence and educational impact at both provincial and institutional levels.

🔮 Legacy and Future Contributions

Guangdi Zhao’s legacy is grounded in his dedication to advancing metallurgical science through high-impact research, leadership, and mentorship. As associate dean, he shapes academic policies and fosters innovation in materials education. Zhao’s future contributions are expected to expand international collaborations, explore novel alloy systems, and enhance industrial applications of his research. His commitment to student development ensures a lasting impact on the next generation of scientists, positioning him as a leading figure in China’s materials science community.

Publications Top Notes

  • Title: Effect of homogenization treatment on the microstructure evolution and hot deformation behavior of hard-deformed superalloy GH4975
    Authors: Zhao Guangdi, Zang Ximin, Sun Yixuan, Xin Xin, Li Xue, Wang Lide, Wang Li
    Journal: Materials Science and Engineering: A
    Year: 2025

  • Title: Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li
    Authors: Guangdi Zhao, Ximin Zang, Yuan Jing, Nan Lü, Jinjiang Wu
    Journal: Materials Science and Engineering: A
    Year: 2021

  • Title: Microstructure and hot ductility behavior of Ni-based superalloy U720Li with boron addition
    Authors: Guang-Di Zhao, Fang Liu, Xi-Min Zang, Wen-Ru Sun
    Journal: Rare Metals
    Year: 2021

  • Title: Role of carbon in modifying solidification and microstructure of a Ni-based superalloy with high Al and Ti contents
    Authors: Guang-di Zhao, Xi-min Zang, Wen-ru Sun
    Journal: Journal of Iron and Steel Research International
    Year: 2021

Girum Girma Bizuneh | Experimental methods | Best Researcher Award

Dr. Girum Girma Bizuneh | Experimental methods | Best Researcher Award

R&D project Manager at Hunan Hongyue New Energy Materials Co.Ltd. | China

Dr. Girum Girma Bizuneh is a seasoned researcher, academic, and R&D leader with specialized expertise in battery technology, electrochemistry, and materials recycling. With over 15 years of progressive experience in research and academia, he has contributed significantly to advancements in lithium-ion and lithium-sulfur batteries. He earned his Ph.D. and M.Sc. from Xiamen University, China, and held various positions in Arba Minch University (Ethiopia), Hunan University, and currently serves as R&D Manager at Hunan Hongyue New Energy Materials Recycling Co. Ltd. His work merges academic rigor with industry-driven innovation in sustainable energy storage.

👨‍🎓Profile

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Bizuneh began his academic journey with a B.Sc. in Chemistry from Arba Minch University, Ethiopia, in 2007. His early interest in chemical processes and materials led him to pursue higher education in China, where he completed both M.Sc. (2013) and Ph.D. (2020) degrees at Xiamen University, renowned for its strong materials science and chemistry programs. During his studies, he developed a solid foundation in electrochemistry, particularly ion transfer across interfaces and battery chemistry, setting the stage for his future research in advanced battery systems and electrolyte engineering.

🧑‍🔬 Professional Endeavors 

Professionally, Dr. Bizuneh has held academic and industry roles that span both teaching and research. Starting as a Lab Technician and Lecturer at Arba Minch University, he later contributed to cutting-edge battery research at Hunan University as a University Research Assistant. Since 2022, he has served as R&D Manager at Hunan Hongyue, where he oversees project direction in battery materials recycling. His unique blend of academic insight and industrial R&D acumen positions him as a critical link between scientific discovery and real-world energy solutions, especially in the context of sustainable technologies and resource recovery.

🔋 Contributions and Research Focus

Dr. Bizuneh’s research is deeply focused on next-generation energy storage technologies, including Li-ion, Li-S batteries, electrochemical capacitors, and electrolyte additive engineering. His work on interface chemistry and solid auxiliary redox couples has contributed to enhancing battery performance and life span. A significant part of his research also emphasizes eco-friendly battery recycling strategies, targeting critical materials recovery and lifecycle sustainability. His peer-reviewed publications, including in top-tier journals, demonstrate his commitment to advancing practical and scalable solutions in the field of electrochemical energy storage and recycling science.

🌍 Impact and Influence

Dr. Bizuneh has established himself as an influential figure in the global battery research community, particularly through his work on high-voltage cathode design and recyclable battery technologies. His co-authored papers have been widely cited and have significantly influenced the direction of interface engineering in energy storage. Notably, he received the Top Cited Article Award (Wiley, 2025) for his publication on carbon materials for capacitors. Through academic and industrial collaboration across China and Ethiopia, he continues to bridge research innovation and societal energy needs, fostering cross-border knowledge transfer and technological adoption.

🧠 Research Skills and Tools

Dr. Bizuneh brings a rich skill set in both experimental and computational tools used in battery research. He is proficient in electrochemical techniques, materials synthesis, and battery performance evaluation. He has expertise in scientific software such as OriginPro, ZView, ChemOffice, and EndNote. In addition, he is skilled in data analysis, interface modeling, and photo editing tools like Adobe Photoshop and Lightroom for scientific visualization. His lab leadership and project management skills enable him to effectively design, execute, and evaluate R&D programs that deliver both academic knowledge and industrial utility.

👨‍🏫 Teaching Experience

With a decade of teaching experience at Arba Minch University, Dr. Bizuneh has taught a range of undergraduate chemistry courses and supervised laboratory sessions. From Graduate Assistant to Lecturer, he demonstrated a strong commitment to academic mentorship and student development. He designed and instructed classes in physical chemistry, analytical methods, and laboratory safety and operations. His teaching style blended theoretical depth with practical application, preparing students for careers in science and technology. His contributions to curriculum development and lab management were instrumental in strengthening the university’s chemistry program infrastructure.

🏆 Awards and Honors

Dr. Bizuneh’s contributions have been formally recognized through several prestigious awards:

  • 🏅 Top Cited Article Award (2025) from Wiley for impactful research on electrochemical capacitors

  • 🎓 Heguang Yangtze River Scholarship (2019) awarded by Xiamen University for academic excellence

  • 🌟 Xiamen University International Student Scholarship (2020)
    These honors underscore his scientific impact, academic performance, and leadership potential. They also highlight his dedication to advancing innovative and sustainable energy solutions. His work continues to influence both academic and industrial communities in the fields of battery science and material chemistry.

🚀 Legacy and Future Contributions

Dr. Bizuneh is poised to leave a lasting legacy in the field of electrochemical energy storage, especially through his efforts in battery recycling and sustainable materials development. His current R&D leadership role positions him to translate academic insights into industrial practices, particularly in addressing battery waste challenges. Looking forward, he aims to develop green recycling technologies, solid-state battery systems, and contribute to policy and innovation frameworks for clean energy. His cross-disciplinary and international background makes him a valuable contributor to global energy transformation, and a mentor for the next generation of scientists and innovators.

Top Noted Publications

High Performance Li||NMC622 Battery Enabled by Multi-Functional Electrolyte Additive Chemistry

  • Authors: Girum Girma Bizuneh, Amir Mahmoud Makin Adam, Chunlei Zhu, Junda Huang, Huaping Wang, Zhongsheng Wang, Daxiong Wu, Lei Guo, Maryam Chafiq, Young Gun Ko
    Journal: Electrochimica Acta
    Year: 2025

Promoting the Sulfur Conversion Kinetics via a Solid Auxiliary Redox Couple Embedded in the Cathode of Li–S Batteries

  • Authors: Girum Girma Bizuneh, Jingmin Fan, Pan Xu, Ruming Yuan, Lin Cao, Mingsen Zheng, Quan-Feng Dong
    Journal: Sustainable Energy & Fuels
    Year: 2020

LaLiO₂-Based Multi-Functional Interlayer for Enhanced Performance of Li–S Batteries

  • Authors: Girum Girma Bizuneh
    Journal: Journal of The Electrochemical Society
    Year: 2019

Solvation Effect Facilitates Ion Transfer across Water/1,2‐Dichloroethane Interface

  • Authors: Nsabimana, J.; Nestor, U.; Girma, G.; Pamphile, N.; Zhan, D.; Tian, Z.-Q.
    Journal: ChemElectroChem
    Year: 2016

Facilitated Li⁺ Ion Transfer across the Water/1,2-Dichloroethane Interface by the Solvation Effect

  • Authors: Girum Girma
    Journal: Chemical Communications (Chem. Commun.)
    Year: 2014

 

 

Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Mrs. Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Research Scholar at National Institute of Technology Warangal | India

Ramadevi Suguru Pathinti is currently pursuing her Ph.D. in Physics at the National Institute of Technology, Warangal, India, specializing in Materials Science with a focus on soft matter research. Her academic journey spans from her M.Sc. in Physics to her ongoing doctoral studies. Ramadevi has made significant contributions in the field of nanomaterials and smart materials, particularly in integrating liquid crystals with metal oxides for the development of advanced gas sensors and UV photodetectors.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Ramadevi’s academic journey began at Rayalaseema University, Kurnool, India, where she pursued her M.Sc. in Physics with a specialization in Electronics, securing a CGPA of 9.1/10. She also holds a B.Sc. in Mathematics, Physics, and Computer Science. Her strong academic foundation laid the groundwork for her pioneering research in Materials Science during her doctoral studies at NIT, Warangal.

Professional Endeavors 💼

In her professional journey, Ramadevi has excelled in scientific research within both academic and industrial contexts. She has contributed to the development of thin film devices for smart window technologies, gas sensors, and photodetectors. Her Ph.D. research focuses on integrating liquid crystal-functionalized metal oxides to enhance the optical properties and responsivity of sensors, enabling advancements in environmental sensing and optoelectronic devices.

Contributions and Research Focus 🔬

Ramadevi’s research is centered on the synthesis of nanomaterials and their integration into innovative smart materials. She has worked extensively on fabricating gas sensors and UV photodetectors using liquid crystal-metal oxide hybrids. Notably, her work on smart windows is groundbreaking, where she has discovered novel optical switching behaviors and light modulation techniques, paving the way for energy-saving technologies. Furthermore, her synthesis methods like sol-gel and hydrothermal techniques have contributed to enhanced material properties for sensing applications.

Impact and Influence 🌍

Her research has already made a considerable impact in the fields of environmental sensing and smart material development, particularly in the energy-efficient technologies sector. Ramadevi’s work has the potential to revolutionize how we detect gases, modulate light, and develop self-powered sensors, with applications ranging from smart windows to sensitive environmental monitoring systems. Through her research, she aims to bring forth sustainable technologies that are adaptable to changing global needs.

Academic Cites 📚

Ramadevi has authored several impactful publications in top-tier peer-reviewed journals, contributing to the fields of materials science and optoelectronics. Her articles in journals like the Journal of Molecular Liquids, Journal of Alloys and Compounds, and Advanced Material Technology have contributed to the scientific community’s understanding of the integration of nanomaterials and liquid crystals for innovative devices. She has also presented her research at national and international conferences, further strengthening her academic profile.

Research Skills 🛠

Ramadevi has developed extensive technical expertise in nanomaterial synthesis using methods like sol-gel and hydrothermal techniques. She is proficient in device fabrication, particularly thin film devices for gas sensing and UV photodetector applications. Additionally, she has hands-on experience with advanced research instruments, including optical polarizing microscopes, fluorescence microscopes, and spin coating systems, which enhance her ability to conduct high-quality research and device development.

Teaching Experience 📚

In addition to her research, Ramadevi has taught practical sessions for both M.Sc. (Tech) Physics and B.Tech students. She has handled laboratory work, where she imparted valuable knowledge on experimental techniques and device characterization to budding scientists. This experience has helped her develop strong interpersonal and communication skills, which are essential for future academic and industrial collaborations.

Awards and Honors 🏆

Ramadevi’s excellence has been acknowledged through the Joint CSIR-UGC National Eligibility Test (NET) for Junior Research Fellowship (JRF) in 2017, where she secured an impressive All India Rank of 57. This achievement is a testament to her academic aptitude and research potential.

Legacy and Future Contributions 🌟

Looking forward, Ramadevi aims to make lasting contributions to the field of materials science and nanotechnology. Her research is poised to drive innovations in smart materials, sustainable technologies, and energy-efficient devices, with far-reaching implications for environmental sensing, smart window technologies, and optoelectronics. With her interdisciplinary approach and collaborative nature, she is well-positioned to make significant advancements in both academic and industrial research.

Publications Top Notes

Label-free detection of Aβ-42: a liquid crystal droplet approach for Alzheimer’s disease diagnosis

  • Authors: Saumya Ranjan Pradhan, Ramadevi Suguru Pathinti, Ramesh Kandimalla, Krishnakanth Chithari, Madhava Rao Veeramalla N., Jayalakshmi Vallamkondu
    Journal: RSC Advances
    Year: 2024

Enhanced ethanol gas detection using TiO2 nanorods dispersed in cholesteric liquid crystal: Synthesis, characterization, and sensing performance

  • Authors: Ramadevi Suguru Pathinti, Sunil Gavaskar Dasari, Buchaiah Gollapelli, Sreedevi Gogula, Ramana Reddy M.V., Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2024

Enhanced security through dye-doped cholesteric liquid crystal shells for anti-counterfeiting

  • Authors: Chris Mathew, Ramadevi Suguru Pathinti, Saumya Ranjan Pradhan, Buchaiah Gollapelli, Krishnakanth Chithari, Mrittika Ghosh, Ashok Nandam, Jayalakshmi Vallamkondu
    Journal: Optical Materials
    Year: 2024

ZnO nanoparticles dispersed cholesteric liquid crystal based smart window for energy saving application

  • Authors: Ramadevi Suguru Pathinti, Arun Kumar Tatipamula, Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2023

Energy saving, transparency changing thermochromism in dye-doped cholesteric liquid crystals for smart windows

  • Authors: Ramadevi Suguru Pathinti, Buchaiah Gollapelli, Saumya Ranjan Pradhan, Jayalakshmi Vallamkondu
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2023

 

Sanjiv Kane | Experimental methods | Best Innovation Award

Mr. Sanjiv Kane | Experimental methods | Best Innovation Award

Scientific Officer at Raja Ramanna Centre for Advanced Technology | India

A Distinguished Scientific Officer in Applied Physics and Synchrotron Radiation

Sanjiv R. Kane is an experienced Scientific Officer with over 25 years of expertise in applied physics, particularly in synchrotron radiation and advanced instrumentation. He is currently pursuing a Ph.D. in Applied Physics at the Maharaja Sayajirao University of Baroda (2023–Present), focusing on advancing the fields of control systems, data acquisition software, and beamline technology. His proven experience spans across several prominent research facilities, including the Indus Synchrotron Facility and CERN, where he has contributed immensely to both research and technology development.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Sanjiv started his academic journey by earning a Bachelor of Science in Physics with minors in Mathematics and Statistics from the University of Poona (1984–1987). He further pursued his Master of Science in Applied Physics at the University of Poona (1987–1989), where he laid the foundation for his extensive career in applied physics and instrumentation design.

💼 Professional Endeavors

 Since June 1999, Sanjiv has served as a Scientific Officer at the Indus Synchrotron Facility, Raja Ramanna Centre for Advanced Technology, Indore, India, where he has worked on numerous high-profile projects. His notable contributions include the development of VME-based control systems, PLC safety interlocks, and the automation of beamline operations. His efforts in designing and deploying data acquisition systems using National Instruments LabVIEW® have been crucial in advancing the synchrotron facility’s capabilities. Additionally, he has been instrumental in designing FPGA-based DAQ systems and PXI system deployments for beamline control.

🔬 Contributions and Research Focus

Sanjiv’s research is centered on synchrotron radiation, particularly in the design and development of control systems for X-ray beamlines and instrumentation. His work on extended X-ray absorption fine structure (EXAFS), soft X-ray reflectivity, and nonlinear behavior of piezoceramic actuators has gained significant attention in the field. He has co-authored several important publications, contributing to the advancement of both material characterization and synchrotron beamline technology.

🌍 Impact and Influence

 Sanjiv’s contributions have made a significant impact on synchrotron radiation research, particularly in beamline automation and data acquisition systems. His international collaborations at CERN and Indus Synchrotron Facility have helped improve the performance of synchrotron radiation facilities, making them more efficient and accessible to researchers worldwide. His papers and conference presentations continue to influence the direction of research in synchrotron instrumentation and applied physics.

📚 Academic Cites

Sanjiv’s work has been widely cited in notable academic journals and has been presented at prestigious international conferences. His publications in journals such as Nuclear Instruments and Methods in Physics Research, Rev. Sci. Instrum., and Mechanics of Advanced Materials and Structures have contributed significantly to the development of synchrotron radiation technologies. Notable works include:

  1. “Extended X-ray Absorption Fine Structure (EXAFS) measurement of Cu metal foil using thermal wave detector: A comparative study.”
  2. “A versatile beamline for soft x-ray reflectivity, absorption, and fluorescence measurements at Indus-2 synchrotron source.”
  3. “Electric field-induced nonlinear behavior of lead zirconate titanate piezoceramic actuators in bending mode.”

🔧 Research Skills

Sanjiv’s technical expertise spans several areas including:

  • Instrumentation & Control: VME systems, PLC programming (Siemens Step 7), microcontroller-based systems (ARM, 8051).
  • Programming Languages: Proficient in LabVIEW®, C/C++, Python, Visual Basic, and VEEPRO.
  • Design & Simulation: Expertise in Altium Designer, Protel, ISE (FPGA design), NI Multisim, and Electronic Workbench.
  • Data Acquisition & Analysis: In-depth experience in developing FPGA-based DAQ systems, PXI systems, and database management using Microsoft Access.

👨‍🏫 Teaching Experience

Sanjiv has extensive experience in training and mentoring junior researchers and scientists in the areas of control systems and instrumentation for synchrotron radiation. His involvement in numerous workshops, symposia, and conferences allows him to share his expertise with others in the field.

🌱 Legacy and Future Contributions

Sanjiv’s legacy lies in his contributions to synchrotron radiation research, particularly in improving beamline automation and X-ray measurement systems. As he continues his Ph.D. journey, his future contributions will likely focus on advanced control systems and enhancements to synchrotron facilities. His ongoing work promises to make lasting improvements in the development of synchrotron instrumentation that will support the scientific community in material science, biotechnology, and physics research.

Publications Top Notes

Characterizing Pyroelectric Detectors for Quantitative Synchrotron Radiation Measurements

  • Authors: SR Kane, RW Whatmore, MN Singh, S Satapathy, PK Jha, PK Mehta
    Journal: Sensors and Actuators A: Physical
    Year: 2025

Development of Piezo-actuated X-ray Deformable Mirror for Vertical Focusing of Synchrotron Radiation at Indus-2

  • Authors: HSK Jha, AK Biswas, MK Swami, A Sagdeo, C Mukherjee, SR Kane, …
    Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators
    Year: 2024

Green Protocol For Synthesis of Cu2O@g‐C3N4 Photocatalysts For 1, 4 Radical Oxidative Addition of Trans Crotonaldehyde Under Visible Light Condition

  • Authors: BA Maru, VJ Rao, S Kane, UK Goutam, CK Modi
    Journal: ChemPhotoChem
    Year: 2024

Development and Initial Results of X-ray Magnetic Circular Dichroism Beamline at Indus-2 Synchrotron Source

  • Authors: B Kiran, SR Garg, CK Garg, S Lal, SK Nath, R Jangir, SR Kane, …
    Journal: Proceedings of the Theme Meeting on Spectroscopy Using Indus Synchrotron
    Year: 2023

Facile Single-pot Synthesis of Fe-doped Nitrogen-rich Graphitic Carbon Nitride (Fe2O3/g-C3N4) Bifunctional Photocatalysts Derived from Urea for White LED-mediated Aldol Condensation Reaction

  • Authors: BA Maru, R Joshi, VJ Rao, SR Kane, CK Modi
    Journal: Inorganic Chemistry Communications
    Year: 2025

 

Weiwei Chen | Experimental methods | Best Researcher Award

Dr. Weiwei Chen | Experimental methods | Best Researcher Award

Chongqing University of Post and Telecommunications | China

Weiwei Chen, Ph.D., is an Assistant Professor in the College of Optoelectronic Engineering at Chongqing University of Post and Telecommunications. With a background in optical engineering and measurement and control technologies, his academic and professional journey has been rooted in advancing optical and optoelectronic systems. His Ph.D. and M.S. degrees were earned at Chongqing University, where he worked under the mentorship of Professor Xiaosheng Tang.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Dr. Weiwei Chen’s academic journey began at Henan University of Science and Technology, where he earned his B.S. in Measurement and Control Technology and Instrumentation in 2014. His strong foundation in measurement technology was followed by a seamless transition into optical engineering. His master’s and doctoral research at Chongqing University focused on the cutting-edge field of optical engineering, under the guidance of Professor Xiaosheng Tang. This experience equipped him with profound insights into optical systems and optoelectronic devices.

Professional Endeavors 💼

Since July 2019, Dr. Weiwei Chen has been a professional teacher at the College of Optoelectronic Engineering at Chongqing University of Post and Telecommunications. In this role, he not only imparts knowledge in optical engineering to students but also contributes to academic research that pushes the boundaries of the optoelectronics field. His responsibilities involve a mix of teaching, research, and mentoring, laying the groundwork for the future generation of engineers in the optoelectronic industry.

Contributions and Research Focus 🔬

Dr. Chen’s research primarily focuses on optical engineering and optoelectronics, exploring innovative solutions in optical systems, laser technology, and measurement devices. His contributions have been fundamental in advancing optoelectronic engineering, a field integral to the development of optical communications, display technologies, and laser systems. Dr. Chen’s research bridges theoretical and practical applications, addressing real-world challenges in the engineering of advanced optical devices.

Impact and Influence 🌍

Dr. Weiwei Chen’s work in optical engineering and optoelectronics has contributed to both academic and industrial advancements. His innovative research has the potential to revolutionize areas such as optical communications, laser technologies, and sensor systems. Through his research and teaching, he is helping shape the future of optoelectronic systems, influencing both academia and industry in China and globally.

Academic Citations 📚

Dr. Chen has authored and co-authored several papers in prominent journals on optical engineering and optoelectronic technologies. These works have been cited in peer-reviewed journals, reflecting the academic recognition and relevance of his contributions. His research impact is growing, with his academic output garnering increasing attention and citations from scholars in related fields.

Research Skills 🛠️

Dr. Chen is skilled in a wide array of research methodologies, including optical characterization, laser technology, and optoelectronic system design. He has a strong grasp of instrumentation, measurement techniques, and data analysis, making him an adept researcher in experimental and theoretical settings. His ability to innovate and solve complex problems makes him an invaluable asset to his research team and the broader academic community.

Teaching Experience 👨‍🏫

As an Assistant Professor, Dr. Chen plays a pivotal role in shaping the educational experience of students at the College of Optoelectronic Engineering. His teaching spans various optical engineering topics, including optics, optoelectronics, laser systems, and measurement devices. His dedication to student success is reflected in his interactive teaching style and the mentoring he provides to graduate and Ph.D. students.

Awards and Honors 🏆

While Dr. Weiwei Chen’s career is still in its early stages, his outstanding academic background and research contributions have set the foundation for future accolades. As his research continues to gain recognition, we expect to see him receiving awards for his work in optical engineering and optoelectronics in the coming years. His academic excellence and dedication to advancing technology promise further success.

Legacy and Future Contributions 🌱

Dr. Weiwei Chen is on a trajectory to make significant contributions to the fields of optical engineering and optoelectronics. His research, coupled with his dedication to teaching, ensures that he will continue to inspire and mentor the next generation of engineers and researchers. As he expands his research horizons, especially in cutting-edge technologies like quantum optics and nano-optics, Dr. Chen’s work will likely have a lasting impact on both academia and industry, particularly in China’s burgeoning optoelectronics sector.

Publications Top Notes

Ultraviolet-Visible Photodetector Based on a Cs2TeI6 Thin Film

  • Authors: Q. Huang, J. Zhu, F. Qi, W. Chen, X. Tang
    Journal: ACS Applied Electronic Materials
    Year: 2025

Highly stable and self-powered ultraviolet photodetector based on Dion-Jacobson phase lead-free double perovskite

  • Authors: Y. Zhou, L. Huang, C. Huang, J. Lai, X. Tang
    Journal: Journal of Luminescence
    Year: 2025

Unity emission in organic phosphonium antimony halide for high color rendering white LED

  • Authors: L. Guo, Z. Wang, Y. Zhou, L. Huang, W. Chen, Y. Liu, F. Wang, X. Zhang, W. Chen, J. Lai, X. Tang
    Journal: Journal of Luminescence
    Year: 2024