Assoc. Prof. Dr. Wei Xiong | Quantum Technologies | Best Researcher Award
Head of Department of Physics, Wenzhou University, China
Dr. Wei Xiong is the Head of the Department of Physics at Wenzhou University and a distinguished researcher in quantum optics. With over 58 peer-reviewed publications, 1500+ citations, and a dynamic academic trajectory, he is recognized for pioneering contributions to quantum information science. His research delves into NV spin–magnon interactions, entanglement dynamics, and nonreciprocal quantum mechanisms, pushing the boundaries of theoretical and experimental physics.
Profile
🎓 Early Academic Pursuits
Dr. Wei Xiong began his academic journey with a B.Sc. in Physics from Chaohu College, followed by an M.Sc. in Atomic, Molecular, and Optical Physics from Anhui University. He earned his Ph.D. in Theoretical Physics from the prestigious Fudan University. His educational background reflects a strong grounding in both fundamental and applied physics. During his training, Dr. Xiong developed deep expertise in quantum mechanics, optical systems, and magnetic interactions, laying the foundation for his future achievements in quantum optics research.
🧪Professional Endeavors
Dr. Xiong’s career includes critical academic roles, from a Research Assistant at The Hong Kong Polytechnic University, to a Postdoctoral Fellow at the Beijing Computational Science Research Center. He served as Lecturer at Hefei Universityand joined Wenzhou University, where he rose to become a Distinguished Professor. His international exposure, including a short-term academic visit to Zhejiang University, has enriched his global perspective and helped foster interdisciplinary collaborations, essential for cutting-edge quantum research.
🔬 Contributions and Research Focus
Dr. Xiong is acclaimed for his innovative research in quantum optics, notably the first realization of long-distance strong coupling between a single NV spin and magnons, and the demonstration of a magnon-mediated high-fidelity two-qubit Iswap gate. He also proposed a nonreciprocal entanglement mechanism enabled by Kerr nonlinearity in magnons, offering new pathways in quantum communication and sensing. His work bridges quantum theory and spintronics, contributing significantly to quantum information science, hybrid systems, and spin-photon interfaces.
🌐 Impact and Influence
With over 1500 citations on Google Scholar, Dr. Xiong’s work is widely recognized in the international quantum physics community. His studies have influenced next-generation quantum devices, sparking interest in both theoretical physics and experimental applications. As the Head of Department, he fosters academic excellence, encouraging innovation, collaboration, and advanced research culture. His leadership and scientific vision continue to shape young physicists, making a significant impact on research, mentoring, and institutional development.
📊 Academic Cites
Dr. Xiong’s citation index surpasses 1500, reflecting the relevance and influence of his published research. His 58 articles indexed in SCI and Scopus databases demonstrate consistent scholarly output, especially in quantum optics, hybrid quantum systems, and spin-based computing. His most cited works explore the interface of magnonics and quantum coherence, highly regarded by peers in quantum technologies and condensed matter physics. This academic footprint solidifies his position among leading early-career researchers in his field.
🧪 Research Skills
Dr. Xiong exhibits a rare combination of theoretical modeling, experimental collaboration, and computational simulations in quantum mechanics. His strengths include designing quantum protocols, understanding nonlinear dynamics, and developing models for magnon-based entanglement. He is proficient in using analytical and numerical tools to solve complex problems in quantum field theory and quantum information processing. His collaborative spirit and technical expertise enable productive joint work across multidisciplinary platforms, enhancing research efficiency, depth, and innovation.
👨🏫 Teaching Experience
With nearly a decade of academic engagement, Dr. Xiong has taught a wide range of undergraduate and postgraduate courses in quantum mechanics, modern physics, electrodynamics, and advanced theoretical physics. His teaching philosophy emphasizes conceptual clarity, research integration, and student empowerment. At Wenzhou University, he has also guided several master’s and PhD-level research projects, fostering critical thinking and hands-on experience. As a departmental leader, he plays a vital role in curriculum development, faculty mentoring, and academic planning, significantly enhancing the university’s physics education standards.
🏅 Awards and Honors
Dr. Wei Xiong was promoted to Distinguished Professor at Wenzhou University in January 2023, recognizing his excellence in research and leadership. Although his record currently shows no patents or books, his scientific output, editorial role, and collaborations with global institutions stand as a testament to his academic value. His rapid promotion through academic ranks and inclusion in impactful projects mark him as a rising star in quantum optics. Membership in prominent research groups and continuous research support further highlight his dedication and scientific merit.
🌟 Legacy and Future Contributions
Dr. Xiong is poised to make transformative contributions to the fields of quantum optics and hybrid quantum systems. As a scholar, mentor, and leader, he is building a research legacy rooted in fundamental discovery and real-world impact. His long-term vision includes expanding nonreciprocal quantum devices, engaging in cross-border collaborations, and fostering young scientific talent. With continued focus on quantum entanglement mechanisms, he is expected to contribute solutions to emerging challenges in quantum communication and quantum computing, ultimately shaping the next generation of optical and quantum technologies.
Publications Top Notes
Strong and noise-tolerant entanglement in dissipative optomechanics
-
Authors: Jiaojiao Chen, Wei Xiong, Dong Wang, Liu Ye
Journal: Physical Review A
Year: 2025
Mechanical Dynamics Around Higher‐Order Exceptional Point in Magno‐Optomechanics
-
Authors: Wen‐Di He, Xiao‐Hong Fan, Ming‐Yue Liu, Guo‐Qiang Zhang, Hai‐Chao Li, Wei Xiong
Journal: Advanced Quantum Technologies
Year: 2025
Cavity magnon–polariton interface for strong spin–spin coupling
-
Authors: Ma-Lei Peng, Miao Tian, Xue-Chun Chen, Ming-Feng Wang, Guo-Qiang Zhang, Hai-Chao Li, Wei Xiong
Journal: Optics Letters
Year: 2025
Nonreciprocal Microwave-Optical Entanglement in Kerr-Modified Cavity Optomagnomechanics
-
Authors: Ming-Yue Liu, Yuan Gong, Jiaojiao Chen, Yan-Wei Wang, Wei Xiong
Journal: Chinese Physics B
Year: 2025
Coherent competition and control between three-wave mixing and four-wave mixing in superconducting circuits
-
Authors: Miao-Xiang Liang, Yu-Xiang Qiu, Hai-Chao Li, Wei Xiong
Journal: Physical Review A
Year: 2025