Wei Xiong | Quantum Technologies | Best Researcher Award

Assoc. Prof. Dr. Wei Xiong | Quantum Technologies | Best Researcher Award

Head of Department of Physics, Wenzhou University, China

Dr. Wei Xiong is the Head of the Department of Physics at Wenzhou University and a distinguished researcher in quantum optics. With over 58 peer-reviewed publications, 1500+ citations, and a dynamic academic trajectory, he is recognized for pioneering contributions to quantum information science. His research delves into NV spin–magnon interactions, entanglement dynamics, and nonreciprocal quantum mechanisms, pushing the boundaries of theoretical and experimental physics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Wei Xiong began his academic journey with a B.Sc. in Physics from Chaohu College, followed by an M.Sc. in Atomic, Molecular, and Optical Physics from Anhui University. He earned his Ph.D. in Theoretical Physics from the prestigious Fudan University. His educational background reflects a strong grounding in both fundamental and applied physics. During his training, Dr. Xiong developed deep expertise in quantum mechanics, optical systems, and magnetic interactions, laying the foundation for his future achievements in quantum optics research.

🧪Professional Endeavors

Dr. Xiong’s career includes critical academic roles, from a Research Assistant at The Hong Kong Polytechnic University, to a Postdoctoral Fellow at the Beijing Computational Science Research Center. He served as Lecturer at Hefei Universityand joined Wenzhou University, where he rose to become a Distinguished Professor. His international exposure, including a short-term academic visit to Zhejiang University, has enriched his global perspective and helped foster interdisciplinary collaborations, essential for cutting-edge quantum research.

🔬 Contributions and Research Focus

Dr. Xiong is acclaimed for his innovative research in quantum optics, notably the first realization of long-distance strong coupling between a single NV spin and magnons, and the demonstration of a magnon-mediated high-fidelity two-qubit Iswap gate. He also proposed a nonreciprocal entanglement mechanism enabled by Kerr nonlinearity in magnons, offering new pathways in quantum communication and sensing. His work bridges quantum theory and spintronics, contributing significantly to quantum information science, hybrid systems, and spin-photon interfaces.

🌐 Impact and Influence

With over 1500 citations on Google Scholar, Dr. Xiong’s work is widely recognized in the international quantum physics community. His studies have influenced next-generation quantum devices, sparking interest in both theoretical physics and experimental applications. As the Head of Department, he fosters academic excellence, encouraging innovation, collaboration, and advanced research culture. His leadership and scientific vision continue to shape young physicists, making a significant impact on research, mentoring, and institutional development.

📊 Academic Cites

Dr. Xiong’s citation index surpasses 1500, reflecting the relevance and influence of his published research. His 58 articles indexed in SCI and Scopus databases demonstrate consistent scholarly output, especially in quantum optics, hybrid quantum systems, and spin-based computing. His most cited works explore the interface of magnonics and quantum coherence, highly regarded by peers in quantum technologies and condensed matter physics. This academic footprint solidifies his position among leading early-career researchers in his field.

🧪 Research Skills 

Dr. Xiong exhibits a rare combination of theoretical modeling, experimental collaboration, and computational simulations in quantum mechanics. His strengths include designing quantum protocols, understanding nonlinear dynamics, and developing models for magnon-based entanglement. He is proficient in using analytical and numerical tools to solve complex problems in quantum field theory and quantum information processing. His collaborative spirit and technical expertise enable productive joint work across multidisciplinary platforms, enhancing research efficiency, depth, and innovation.

👨‍🏫 Teaching Experience

With nearly a decade of academic engagement, Dr. Xiong has taught a wide range of undergraduate and postgraduate courses in quantum mechanics, modern physics, electrodynamics, and advanced theoretical physics. His teaching philosophy emphasizes conceptual clarity, research integration, and student empowerment. At Wenzhou University, he has also guided several master’s and PhD-level research projects, fostering critical thinking and hands-on experience. As a departmental leader, he plays a vital role in curriculum development, faculty mentoring, and academic planning, significantly enhancing the university’s physics education standards.

🏅 Awards and Honors

Dr. Wei Xiong was promoted to Distinguished Professor at Wenzhou University in January 2023, recognizing his excellence in research and leadership. Although his record currently shows no patents or books, his scientific output, editorial role, and collaborations with global institutions stand as a testament to his academic value. His rapid promotion through academic ranks and inclusion in impactful projects mark him as a rising star in quantum optics. Membership in prominent research groups and continuous research support further highlight his dedication and scientific merit.

🌟 Legacy and Future Contributions

Dr. Xiong is poised to make transformative contributions to the fields of quantum optics and hybrid quantum systems. As a scholar, mentor, and leader, he is building a research legacy rooted in fundamental discovery and real-world impact. His long-term vision includes expanding nonreciprocal quantum devices, engaging in cross-border collaborations, and fostering young scientific talent. With continued focus on quantum entanglement mechanisms, he is expected to contribute solutions to emerging challenges in quantum communication and quantum computing, ultimately shaping the next generation of optical and quantum technologies.

Publications Top Notes

Strong and noise-tolerant entanglement in dissipative optomechanics
  • Authors: Jiaojiao Chen, Wei Xiong, Dong Wang, Liu Ye
    Journal: Physical Review A
    Year: 2025

Mechanical Dynamics Around Higher‐Order Exceptional Point in Magno‐Optomechanics
  • Authors: Wen‐Di He, Xiao‐Hong Fan, Ming‐Yue Liu, Guo‐Qiang Zhang, Hai‐Chao Li, Wei Xiong
    Journal: Advanced Quantum Technologies
    Year: 2025

Cavity magnon–polariton interface for strong spin–spin coupling
  • Authors: Ma-Lei Peng, Miao Tian, Xue-Chun Chen, Ming-Feng Wang, Guo-Qiang Zhang, Hai-Chao Li, Wei Xiong
    Journal: Optics Letters
    Year: 2025

Nonreciprocal Microwave-Optical Entanglement in Kerr-Modified Cavity Optomagnomechanics
  • Authors: Ming-Yue Liu, Yuan Gong, Jiaojiao Chen, Yan-Wei Wang, Wei Xiong
    Journal: Chinese Physics B
    Year: 2025

Coherent competition and control between three-wave mixing and four-wave mixing in superconducting circuits
  • Authors: Miao-Xiang Liang, Yu-Xiang Qiu, Hai-Chao Li, Wei Xiong
    Journal: Physical Review A
    Year: 2025

 

 

 

Sudip Kumar Haldar | Quantum Technologies | Best Faculty Award

Dr. Sudip Kumar Haldar | Quantum Technologies | Best Faculty Award

Jaypee Institute of Information Technology | India

Dr. Sudip Kumar Haldar is an accomplished Assistant Professor in the Department of Physics and Material Science & Engineering at Jaypee Institute of Information Technology, Noida. With an extensive academic and research career, Dr. Haldar specializes in Theoretical Condensed Matter Physics, focusing on quantum gases and quantum information theory (QIC). He has contributed significantly to the field, with research spanning multiple prestigious institutions, including a post-doctoral stint at the University of Haifa, Israel, and the Physical Research Laboratory, India. His diverse roles have influenced various subfields of physics, particularly many-body dynamics and quantum technologies.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 📚

Dr. Haldar’s academic journey began with his early education in Kolkata, India, where he excelled in science subjects. He completed his B.Sc. (Hons.) in Physics from Calcutta University in 2006, securing First Class results. He further pursued M.Sc. in Physics from the same institution in 2008, followed by success in prestigious exams like GATE (2009) and the CSIR-JRF (2009). Dr. Haldar’s academic excellence culminated in his Ph.D. from Calcutta University in 2015, where his research focused on the stability of Bose-Einstein condensates in finite optical traps.

Professional Endeavors 🌏

Dr. Haldar has worked in prestigious institutions worldwide. He was a Post-doctoral Research Assistant at the University of Haifa, Israel (2016-2019), where he studied many-body dynamics and excitation spectra in trapped ultra-cold atomic gases. He also worked at the Physical Research Laboratory (ISRO) in Ahmedabad (2014-2016), exploring thermalization dynamics in quantum systems using embedded random matrix theory. In his current position at Jaypee Institute of Information Technology, Dr. Haldar continues to push the frontiers of quantum technologies and quantum information science.

Contributions and Research Focus 🔬

Dr. Haldar’s research interests primarily revolve around Theoretical Condensed Matter Physics and Quantum Information Science (QIC). His work explores the dynamics of quantum gases, the interaction effects in ultracold bosonic systems, and the role of entanglement in quantum phase transitions. He is currently investigating quantum technologies for next-generation quantum computing. His notable publications include a paper on topological quantum phase transitions and significant contributions to the study of bosonic Josephson junctions and finite-range interactions.

Research Skills 🧠

Dr. Haldar possesses an advanced skill set in computational physics, with proficiency in LaTeX, Fortran95, C++, and HPC systems. His research often involves the use of high-performance computing (HPC) to simulate and analyze complex quantum dynamics. He regularly employs advanced computational techniques and methods such as Multiconfigurational Time-Dependent Hartree (MCTDH) for quantum simulations, contributing significantly to his field’s computational modeling advancements.

Teaching Experience 🎓

As an Assistant Professor, Dr. Haldar has taught various courses in Physics and Material Science. He has also been actively involved in conducting workshops and training sessions for students and faculty. Notably, he was a resource person for the One Week Workshop on Scientific & Technical Research Scripting Using LaTeX at SRM University in 2023. His teaching pedagogy emphasizes outcome-based education, incorporating interactive learning to inspire students in the fundamentals of theoretical physics.

Awards and Honors 🏆

Dr. Haldar’s excellence in research and academia has been recognized through various awards and fellowships. He received the CSIR Junior Research Fellowship (2010) based on his performance in the UGC-CSIR NET exam. He has been a Life Member of the Indian Society of Atomic & Molecular Physics (ISAMP). His post-doctoral fellowships include prestigious positions such as the Institute Post-Doctoral Fellowship from the University of Haifa and the BK21 Plus Postdoctoral Fellowship under the Brain Korea 21 Program.

Citations📚

A total of 165 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations –  165
  • h-index   –      8
  • i10-index –     7

Legacy and Future Contributions 🌱

Dr. Haldar’s work continues to inspire students and fellow researchers in the fields of quantum physics and condensed matter theory. His research on quantum dynamics, BECs, and quantum phase transitions has the potential to contribute significantly to the development of quantum computing technologies. With ongoing projects like the DST SERB funded project on quantum technologies, Dr. Haldar is at the forefront of the future of quantum science in India and globally. His legacy will likely be marked by his pivotal role in advancing quantum systems and theoretical physics.

Publications Top Notes

Many-Body Effects in a Composite Bosonic Josephson Junction

  • Authors: Sudip Kumar Haldar, Anal Bhowmik
    Journal: Atoms, 2024

Predicting a Topological Quantum Phase Transition from Dynamics via Multisite Entanglement

  • Authors: Leela Ganesh Chandra Lakkaraju, Sudip Kumar Haldar, Aditi Sen (De)
    Journal: Physical Review A, 2024

Impact of the Transverse Direction on the Many-Body Tunneling Dynamics in a Two-Dimensional Bosonic Josephson Junction

  • Authors: Anal Bhowmik, Sudip Kumar Haldar, Ofir E. Alon
    Journal: Scientific Reports, 2020

Relaxation of Shannon Entropy for Trapped Interacting Bosons with Dipolar Interactions

  • Authors: Sangita Bera, Sudip Kumar Haldar, Barnali Chakrabarti, Andrea Trombettoni, V. K. B. Kota
    Journal: The European Physical Journal D, 2020

Many-Body Quantum Dynamics of an Asymmetric Bosonic Josephson Junction

  • Authors: Sudip Kumar Haldar, Ofir E. Alon
    Journal: New Journal of Physics, 2019