Dejan Milošević | Interactions and fields | Best Researcher Award

Prof. Dr. Dejan Milošević | Interactions and fields | Best Researcher Award

Full professor of theoretical physics, University of Sarajevo, Bosnia and Herzegovina

👨‍🎓 Profile

Early Academic Pursuits 🎓

Dejan Milošević was born on July 5, 1959, in Sarajevo, Bosnia and Herzegovina. His academic journey began at the Faculty of Science, University of Sarajevo, where he studied Physics and completed his undergraduate degree in 1981. He furthered his education at the University of Belgrade, where he pursued postgraduate studies in Theoretical Physics, earning his M.Sc. in 1986 and Ph.D. in 1990. His doctoral thesis, titled “Atomic processes in a strong laser field,” laid the foundation for his long and distinguished career in laser physics and atomic theory.

Professional Endeavors 💼

Milošević’s career spans over four decades, starting in 1982 when he worked as an Assistant at the Institute of Physics at the University of Sarajevo. From 1984 to 1998, he served as a Researcher at the Research & Development Centre of the Zrak company, focusing on applied physics and technology. His academic journey advanced rapidly, and he became an Assistant Professor in 1991 at the Faculty of Mechanical Engineering, University of Sarajevo. By 1998, he joined the Department of Physics at the Faculty of Science, becoming an Associate Professor. He was promoted to Full Professor in 2004, specializing in Theoretical Physics. His leadership roles included heading the Department of Atomic, Molecular, and Optical Physics (2001-2004) and overseeing the Postgraduate Study of Physics (2004-2012). He also served as Vice-Dean for International Collaboration from 2011-2016, strengthening the university’s global academic relationships.

Contributions and Research Focus 🔬

Milošević’s research primarily focuses on atomic processes in strong laser fields, laser-matter interactions, and attosecond science. He has contributed significantly to the field of nonlinear optics and quantum mechanics. His pioneering work in atomic physics has had a profound impact on understanding laser-induced phenomena and the interaction between light and matter at ultra-short timescales. A notable aspect of his research is his work on attosecond physics, where he investigates the dynamics of electrons and their interaction with intense laser pulses. His collaboration with the Max-Born-Institut für Nichtlineare Optik und Kurzzeit-Spektroskopie in Berlin has been instrumental in advancing the field.

Impact and Influence 🌍

Milošević’s work has garnered international recognition. His collaborations with research institutions such as the Institute for Theoretical Physics in Innsbruck and the University of Nebraska have broadened his impact. His research is frequently cited, and he has become a key figure in the atomic and laser physics community. His publications, totaling 247 papers, have been cited over 10,000 times, reflecting the profound influence of his work. He has received numerous awards, including the Alexander von Humboldt Fellowship and the Georg Forster Research Award from the Alexander von Humboldt Foundation, highlighting his exceptional contributions to the field of theoretical physics.

Academic Citations 📚

According to the Web of Science Core Collection, Milošević’s work has achieved substantial academic recognition, with an h-index of 52 and more than 10,000 citations. This underscores the impact of his research within the global scientific community. His scholarly output spans both highly theoretical and experimental domains, making him one of the leading experts in his field. His continued contributions ensure that his research remains highly influential, especially in the fields of laser-matter interactions and quantum mechanics.

Technical Skills 🛠️

Milošević possesses a wide range of technical skills that have been honed throughout his career. His expertise spans theoretical physics, quantum mechanics, laser physics, and nonlinear optics. He is proficient in the use of advanced computational tools for modeling atomic and molecular processes, and he has contributed to the development of new theoretical frameworks for understanding light-matter interactions at extreme timescales. His technical proficiency is complemented by a deep understanding of experimental techniques, gained through years of collaboration with leading research groups around the world.

Teaching Experience 📖

Milošević has been a dedicated educator at the University of Sarajevo, where he has mentored and trained hundreds of students at both undergraduate and postgraduate levels. He served as the Head of the Doctoral Study at the Department of Physics from 2013 to 2019, shaping the future of theoretical physics in Bosnia and Herzegovina. His teaching philosophy emphasizes rigorous scientific thinking and innovative research. As a result, his students have gone on to become leading physicists and researchers in their own right. His recognition as the Best Professor of the Year at the University of Sarajevo in 2009 reflects the high esteem in which he is held by his peers and students.

Legacy and Future Contributions 🌟

Milošević’s legacy is one of academic excellence, scientific leadership, and international collaboration. He has significantly shaped the development of theoretical physics at the University of Sarajevo and in Bosnia and Herzegovina, leaving an indelible mark on the scientific landscape. His future contributions are likely to continue in the realm of attosecond science and quantum optics, areas where his research has already demonstrated great promise. As he continues his work with international collaborators, his ongoing research will undoubtedly lead to further breakthroughs in the understanding of laser physics and quantum dynamics.

Top Noted Publications

Asymptotic methods applied to integrals occurring in strong-laser-field processes
  • Authors: Milošević, D.B., Jašarević, A.S., Habibović, D., Čerkić, A., Becker, W.
    Journal: Journal of Physics A: Mathematical and Theoretical
    Year: 2024
Above-threshold ionization by a strong circularly polarized laser pulse assisted by a terahertz pulse
  • Authors: Agačević, D., Ibrišimović, N., Škrgić, D., Milošević, D.B.
    Journal: European Physical Journal D
    Year: 2024
Quantum orbits in atomic ionization beyond the dipole approximation
  • Authors: Jašarević, A.S., Habibović, D., Milošević, D.B.
    Journal: Physical Review A
    Year: 2024
High-order above-threshold ionisation of diatomic molecules by few-cycle bicircular and orthogonally polarised two-colour pulses
  • Authors: Habibović, D., Jašarević, A.S., Busuladžić, M., Milošević, D.B.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024
Wigner time delay revisited
  • Authors: Fetić, B., Becker, W., Milošević, D.B.
    Journal: Annals of Physics
    Year: 2024
Modified saddle-point method applied to high-order above-threshold ionization and high-order harmonic generation: Slater-type versus asymptotic ground-state wave function
  • Authors: Jašarević, A.S., Hasović, E., Milošević, D.B.
    Journal: Physical Review A
    Year: 2024
Strong-field processes induced by an ultrashort linearly polarized pulse with two carrier frequencies
  • Authors: Habibović, D., Milošević, D.B.
    Journal: Physical Review A
    Year: 2024

 

 

Wuhong Zhang | Quantum Technologies | Best Researcher Award

Prof. Wuhong Zhang | Quantum Technologies | Best Researcher Award

Associate Professor at Xiamen University, China

Dr. Wuhong Zhang is an Associate Professor in the Department of Physics at Xiamen University. His research interests span quantum optics, photon’s orbital angular momentum (OAM), and quantum computation, with a particular focus on exploiting new degrees of freedom in light for quantum technologies. He has published over 20 research papers in prestigious journals, contributing significantly to quantum correlations, entanglement, and nonlinear optics. His work on OAM and radial momentum of photons has been widely recognized, with several papers highlighted by the editors of journals like Physical Review Letters and Laser & Photonics Review.

Profile🎓

Early Academic Pursuits 📚

Dr. Wuhong Zhang embarked on his academic journey in the field of Physics at Nanyang Normal University, where he earned his undergraduate degree in 2012. His interest in optics and quantum physics began early, laying the foundation for his graduate studies at Xiamen University. He pursued his Master’s degree (2012-2014) and Ph.D. (2014-2017) in Optics and Quantum Optics, where his research on light’s orbital angular momentum (OAM) marked the beginning of his groundbreaking work. Dr. Zhang’s doctoral research focused on the fundamental properties of light and its potential applications in quantum computation, which paved the way for his later contributions to quantum nonlinear optics and structured light.

Professional Endeavors 💼

Following the completion of his Ph.D., Dr. Zhang continued to build his academic career at Xiamen University, where he transitioned from Assistant Professor (2019-2022) to Associate Professor (2022-present) in the Department of Physics. During this time, Dr. Zhang also held important research positions, including a Research Assistant role at Sun Yat-sen University and a Visiting Researcher position at the University of Ottawa in collaboration with the renowned Robert Boyd Group. These experiences allowed him to enhance his expertise in quantum optics, leading to the development of cutting-edge research in quantum correlations and optical parametric down-conversion.

Contributions and Research Focus 🔬

Dr. Zhang’s research focus is centered around the manipulation of photon’s orbital angular momentum (OAM) and radial momentum in the realms of optics and quantum computation. His work in quantum nonlinear optics and the control of quantum correlations within a photonic system is redefining traditional concepts in quantum mechanics. Dr. Zhang’s contributions include free-space remote sensing, quantum remote sensing, and the generation of position-momentum entanglement, all of which have critical implications for the future of quantum information science. His exploration of structured light and entanglement in high-dimensional spaces has led to significant advancements in quantum pattern recognition and optical computing.

Impact and Influence 🌍

Dr. Zhang’s research has significantly impacted the field of quantum optics, with numerous publications in top-tier journals like Physical Review Letters, Optics Express, and Laser & Photonics Review. His highly cited papers have been featured as research highlights and inside cover articles, underlining their global importance. For example, his work on quantum remote sensing and entanglement-assisted ghost imaging has advanced the understanding of how quantum properties can be utilized for high-precision measurements in optical systems. His influence extends beyond academia, as his research is contributing to the development of next-generation quantum technologies such as quantum communication and quantum computing.

Academic Citations 📑

With over 20 high-impact publications, Dr. Zhang’s work is well-recognized in the field of quantum optics. His papers have received significant attention, evidenced by their citation metrics and the numerous research highlights they have garnered in prestigious journals. For example, his paper on optical vortices with a small number of photons published in Laser & Photon. Rev. was selected by the editors for an Inside Cover Paper, and his work on the Einstein-Podolsky-Rosen paradox using radial variables has been featured in Physics. These accolades underscore his growing influence in the academic community, with a strong trajectory toward further recognition in quantum sciences.

Technical Skills 🛠️

Dr. Zhang possesses a comprehensive skill set in both theoretical and experimental optics. His proficiency includes quantum entanglement, nonlinear optics, and photon manipulation techniques such as the generation of entangled photon pairs and quantum correlations. He is adept at utilizing structured light techniques to explore orbital angular momentum and radial momentum in photons. Furthermore, Dr. Zhang is well-versed in optical computing, including the use of twisted light for complex vector convolution. His technical expertise extends to quantum sensing, high-dimensional systems, and deep-learning-based optical pattern recognition, showcasing a well-rounded ability to innovate in cutting-edge areas of quantum physics.

Teaching Experience 👨‍🏫

Dr. Zhang has a solid commitment to teaching and mentoring students at Xiamen University, where he teaches a range of undergraduate and graduate courses, including Optics, Electromagnetics, College Physics, and Physics Experiment. He is known for integrating scientific research enlightenment into his teaching, encouraging students to engage with real-world applications of quantum science and physics. His teaching prowess has been recognized with several awards such as the Second Prize in the Fujian Youth Education Competition (2022) and the Outstanding Young Teachers of University/College in Fujian Province (2022). These accolades speak to his ability to inspire the next generation of scientists and researchers.

Legacy and Future Contributions 🚀

Dr. Zhang’s legacy is already shaping the future of quantum optics and quantum information science. As a leading researcher in the field, his work continues to push the boundaries of what is possible with structured light, quantum correlations, and photon manipulation. Looking ahead, Dr. Zhang aims to further expand his research in quantum computing and quantum communication, working toward real-world applications that will have broad implications for fields ranging from cryptography to medical imaging. His ongoing research projects, such as quantum edge enhancement and quantum pattern recognition, are poised to make groundbreaking contributions to the future of quantum technologies. With continued focus on interdisciplinary collaboration, Dr. Zhang’s work will undoubtedly leave a lasting impact on both academic research and technological innovation in the coming decades.

Top Noted Publications📖

Sorting infrared optical vortices with a nonlinear angular lens
    • Authors: Weiqian Shu, Xiaodong Qiu, Yuan Ren, Wuhong Zhang, Lixiang Chen
    • Journal: Optics Letters
    • Year: 2024
A versatile device for implementing the optical quantum gates in multiple degrees of freedom
    • Authors: Hongming Ke, Shaochen Fang, Wuhong Zhang
    • Journal: Optics & Laser Technology
    • Year: 2024
Polarization Entanglement from Parametric Down-conversion with an LED Pump
    • Authors: Wuhong Zhang, Diefei Xu, Lixiang Chen
    • Journal: Physical Review Applied
    • Year: 2023
Quantum information transfer between a two-level and a four-level quantum systems
    • Authors: Tianfeng Feng, Qiao Xu, Linxiang Zhou, Maolin Luo, Wuhong Zhang, Xiaoqi Zhou
    • Journal: Photonics Research
    • Year: 2022
Non-orthogonal polarization encoding/decoding assisted by structured optical pattern recognition
    • Authors: Shaochen Fang, Yidan Cai, Diefei Xu, Haoxu Guo, Wuhong Zhang, Lixiang Chen
    • Journal: Optics Express
    • Year: 2022
Thermal lens effect with light’s orbital angular momentum
    • Authors: Yuan Li, Wuhong Zhang, Lixiang Chen
    • Journal: Optics Express
    • Year: 2022
Verifying angular-position entanglement by Hardy’s paradox with multisetting high-dimensional systems
    • Authors: Dongkai Zhang, Xiaodong Qiu, Wuhong Zhang, Lixiang Chen
    • Journal: Physical Review A
    • Year: 2022