Tian Luan | Quantum Technologies | Best Researcher Award

Dr. Tian Luan | Quantum Technologies | Best Researcher Award

China Academy of Electronics and Information Technology | China

Dr. Luan Tian is a Senior Engineer at the China Academy of Electronics and Information Technology and an off-campus tutor for doctoral students at Southeast University. He is recognized as a young expert in the field of Quantum Information within the China Electronics Technology Group Corporation. Luan Tian currently holds the position of Operation Director in charge of scientific research at the Yangtze River Delta Industrial Innovation Center of Quantum Technology. He is regarded as an outstanding youth of China Electronics Technology and a leading talent in Suzhou innovation.

👨‍🎓 Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Luan Tian’s academic journey began with a strong foundation in quantum physics and information technology, paving the way for his future in the Quantum Information field. His educational background equipped him with the critical skills to contribute to cutting-edge advancements in technology. As an off-campus tutor at Southeast University, Luan plays a key role in guiding and mentoring the next generation of scientists and engineers in Quantum Computing.

Professional Endeavors 🏆

Dr. Luan Tian’s professional career spans multiple high-level roles, including leadership positions in research and development and industrial innovation. He has successfully led major tasks and projects funded by the China Electronics Science and Technology Development Fund, bringing forward revolutionary advancements in Quantum Computing. His leadership has been pivotal in the development of China’s first fully autonomous 20-bit superconducting Quantum computer and in shaping the industrial chain for superconducting Quantum technologies domestically.

Contributions and Research Focus 🔬

Dr. Luan Tian’s research focus lies in the realm of Quantum Information and Quantum Computing, particularly in the development of superconducting quantum computers. He has made substantial contributions by spearheading projects that resulted in the successful creation of a 20-bit fully autonomous superconducting quantum computer. His work in the industrialization of quantum technologies, especially superconducting quantum computers, has been instrumental in shaping the domestic industry and solidifying China’s position in the global quantum race.

Impact and Influence 🌍

Dr. Luan Tian has had a tremendous impact on both the academic and industrial sectors of Quantum Technology. As the Operation Director of the Yangtze River Delta Industrial Innovation Center of Quantum Technology, he has facilitated the growth and development of quantum technologies in the region. His leadership has contributed to building the core equipment and infrastructure needed to support the future of quantum computing in China and has made a significant contribution to the global quantum computing community.

Academic Cites 📚

Dr. Luan Tian’s academic contributions are reflected in his publications, with more than ten high-level academic papers in peer-reviewed journals. These papers have been widely cited, showcasing the relevance and impact of his research in the field of Quantum Information. His work has gained recognition from scholars worldwide, solidifying his position as a leader in Quantum Computing.

Research Skills đź”§

Dr. Luan Tian possesses exceptional research skills, particularly in the areas of quantum systems design, superconducting qubits, and quantum information processing. He has a deep understanding of quantum hardware and software integration, making him a crucial figure in developing practical quantum computing solutions. His research is at the forefront of advancing quantum computing toward real-world applicability.

Teaching Experience 🍎

As an off-campus tutor for doctoral students, Luan Tian has a significant role in shaping the next generation of quantum researchers. His teaching experience reflects his commitment to academia and his passion for nurturing young talent in the emerging field of Quantum Computing. His mentorship extends beyond lectures, as he actively guides students through their research endeavors, preparing them for future challenges in the tech industry.

Awards and Honors 🏅

Dr. Luan Tian has received numerous awards and recognitions for his outstanding contributions to Quantum Information and Quantum Computing. He has been recognized as an outstanding youth by the China Electronics Technology Group Corporation and as a leading talent in Suzhou innovation. His work has earned him high regard within both academic and industrial communities, and he continues to receive praise for his leadership in scientific research.

Legacy and Future Contributions đź”®

Dr. Luan Tian’s legacy in Quantum Technology is already taking shape. His pioneering work in superconducting quantum computers and quantum technologies is expected to have a lasting influence on the global scientific community. Moving forward, he aims to expand his research into interdisciplinary areas, pushing the boundaries of Quantum Computing and Quantum Information. As a leading figure in China’s quantum industry, his future contributions will likely continue to shape the global landscape of quantum technology.

  Publications Top Notes

Non-Markovian quantum gate set tomography

  • Authors: Li, Z.-T., Zheng, C.-C., Meng, F.-X., Zhang, Z.-C., Yu, X.-T.
    Journal: Quantum Science and Technology
    Year: 2024

A quantum synthetic aperture radar image denoising algorithm based on grayscale morphology

  • Authors: Wang, L., Liu, Y., Meng, F., Zhang, Z., Yu, X.
    Journal: iScience
    Year: 2024

Improved Quantum Approximate Optimization Algorithm for Low-Density Parity-Check Channel Decoding

  • Authors: Zeng, H., Meng, F., Luan, T., Yu, X., Zhang, Z.
    Journal: Advanced Quantum Technologies
    Year: 2024

Quantum Tomography: From Markovianity to Non-Markovianity

  • Authors: Luan, T., Li, Z., Zheng, C., Yu, X., Zhang, Z.
    Journal: Symmetry
    Year: 2024

Practical circuit optimization algorithm for quantum simulation based on template matching

  • Authors: Liu, Y., Zhang, Z., Hu, Y., Zhang, X., Yu, X.
    Journal: Quantum Information Processing
    Year: 2024

 

 

Sudip Kumar Haldar | Quantum Technologies | Best Faculty Award

Dr. Sudip Kumar Haldar | Quantum Technologies | Best Faculty Award

Jaypee Institute of Information Technology | India

Dr. Sudip Kumar Haldar is an accomplished Assistant Professor in the Department of Physics and Material Science & Engineering at Jaypee Institute of Information Technology, Noida. With an extensive academic and research career, Dr. Haldar specializes in Theoretical Condensed Matter Physics, focusing on quantum gases and quantum information theory (QIC). He has contributed significantly to the field, with research spanning multiple prestigious institutions, including a post-doctoral stint at the University of Haifa, Israel, and the Physical Research Laboratory, India. His diverse roles have influenced various subfields of physics, particularly many-body dynamics and quantum technologies.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 📚

Dr. Haldar’s academic journey began with his early education in Kolkata, India, where he excelled in science subjects. He completed his B.Sc. (Hons.) in Physics from Calcutta University in 2006, securing First Class results. He further pursued M.Sc. in Physics from the same institution in 2008, followed by success in prestigious exams like GATE (2009) and the CSIR-JRF (2009). Dr. Haldar’s academic excellence culminated in his Ph.D. from Calcutta University in 2015, where his research focused on the stability of Bose-Einstein condensates in finite optical traps.

Professional Endeavors 🌏

Dr. Haldar has worked in prestigious institutions worldwide. He was a Post-doctoral Research Assistant at the University of Haifa, Israel (2016-2019), where he studied many-body dynamics and excitation spectra in trapped ultra-cold atomic gases. He also worked at the Physical Research Laboratory (ISRO) in Ahmedabad (2014-2016), exploring thermalization dynamics in quantum systems using embedded random matrix theory. In his current position at Jaypee Institute of Information Technology, Dr. Haldar continues to push the frontiers of quantum technologies and quantum information science.

Contributions and Research Focus 🔬

Dr. Haldar’s research interests primarily revolve around Theoretical Condensed Matter Physics and Quantum Information Science (QIC). His work explores the dynamics of quantum gases, the interaction effects in ultracold bosonic systems, and the role of entanglement in quantum phase transitions. He is currently investigating quantum technologies for next-generation quantum computing. His notable publications include a paper on topological quantum phase transitions and significant contributions to the study of bosonic Josephson junctions and finite-range interactions.

Research Skills đź§ 

Dr. Haldar possesses an advanced skill set in computational physics, with proficiency in LaTeX, Fortran95, C++, and HPC systems. His research often involves the use of high-performance computing (HPC) to simulate and analyze complex quantum dynamics. He regularly employs advanced computational techniques and methods such as Multiconfigurational Time-Dependent Hartree (MCTDH) for quantum simulations, contributing significantly to his field’s computational modeling advancements.

Teaching Experience 🎓

As an Assistant Professor, Dr. Haldar has taught various courses in Physics and Material Science. He has also been actively involved in conducting workshops and training sessions for students and faculty. Notably, he was a resource person for the One Week Workshop on Scientific & Technical Research Scripting Using LaTeX at SRM University in 2023. His teaching pedagogy emphasizes outcome-based education, incorporating interactive learning to inspire students in the fundamentals of theoretical physics.

Awards and Honors 🏆

Dr. Haldar’s excellence in research and academia has been recognized through various awards and fellowships. He received the CSIR Junior Research Fellowship (2010) based on his performance in the UGC-CSIR NET exam. He has been a Life Member of the Indian Society of Atomic & Molecular Physics (ISAMP). His post-doctoral fellowships include prestigious positions such as the Institute Post-Doctoral Fellowship from the University of Haifa and the BK21 Plus Postdoctoral Fellowship under the Brain Korea 21 Program.

Citations📚

A total of 165 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations –  165
  • h-index   –      8
  • i10-index –     7

Legacy and Future Contributions 🌱

Dr. Haldar’s work continues to inspire students and fellow researchers in the fields of quantum physics and condensed matter theory. His research on quantum dynamics, BECs, and quantum phase transitions has the potential to contribute significantly to the development of quantum computing technologies. With ongoing projects like the DST SERB funded project on quantum technologies, Dr. Haldar is at the forefront of the future of quantum science in India and globally. His legacy will likely be marked by his pivotal role in advancing quantum systems and theoretical physics.

Publications Top Notes

Many-Body Effects in a Composite Bosonic Josephson Junction

  • Authors: Sudip Kumar Haldar, Anal Bhowmik
    Journal: Atoms, 2024

Predicting a Topological Quantum Phase Transition from Dynamics via Multisite Entanglement

  • Authors: Leela Ganesh Chandra Lakkaraju, Sudip Kumar Haldar, Aditi Sen (De)
    Journal: Physical Review A, 2024

Impact of the Transverse Direction on the Many-Body Tunneling Dynamics in a Two-Dimensional Bosonic Josephson Junction

  • Authors: Anal Bhowmik, Sudip Kumar Haldar, Ofir E. Alon
    Journal: Scientific Reports, 2020

Relaxation of Shannon Entropy for Trapped Interacting Bosons with Dipolar Interactions

  • Authors: Sangita Bera, Sudip Kumar Haldar, Barnali Chakrabarti, Andrea Trombettoni, V. K. B. Kota
    Journal: The European Physical Journal D, 2020

Many-Body Quantum Dynamics of an Asymmetric Bosonic Josephson Junction

  • Authors: Sudip Kumar Haldar, Ofir E. Alon
    Journal: New Journal of Physics, 2019

 

 

Basudev Nag Chowdhury | Quantum Technologies | Best Researcher Award

Dr. Basudev Nag Chowdhury | Quantum Technologies | Best Researcher Award

QSciT Research | India

Dr. Basudev Nag Chowdhury, an accomplished scientist and researcher, is currently the Head of Research & Innovation at QSciT Research Pvt. Ltd., Kolkata, India. He is also a Senior Research Consultant with the Nano Bio-Photonics Group at the Department of Electronics & Electrical Communication Engineering, IIT Kharagpur. With a strong background in Quantum Physics and Nanotechnology, Dr. Chowdhury has made notable contributions in areas such as quantum computing, quantum-enhanced sensing, and neuromorphic computing. His research combines both theoretical and experimental approaches to explore and manipulate quantum phenomena for practical applications.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Chowdhury’s academic journey began with a B.Sc. in Physics (Hons.) from Presidency College, University of Calcutta in 2006, followed by a M.Sc. in Physics from the Department of Physics, University of Calcutta in 2008. His passion for the frontier of nanotechnology led him to pursue a PhD at the Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, where he made significant contributions to transport behavior modeling in nanowires. His doctoral thesis was focused on Silicon Nanowire Field Effect Transistors (Si NWFETs), which has been highly influential in the field of nanoelectronics.

Professional Endeavors 🚀

Dr. Chowdhury has held several prestigious research positions over the years. From being a Project Fellow to a Post-Doctoral Research Associate at the University of Calcutta, his career trajectory shows consistent growth in both teaching and research. His tenure at IIT Kharagpur and University of Calcutta as a Visiting Researcher is marked by impactful contributions to quantum physics, nanotechnology, and neuromorphic computing. Notably, Dr. Chowdhury’s involvement in the Nano Bio-Photonics Group at IIT Kharagpur reflects his expanding role in integrating quantum technology with biological sciences.

Contributions and Research Focus 🔬

Dr. Chowdhury’s research focus lies primarily in quantum computing, quantum sensing, and nanotechnology. He is particularly interested in developing CMOS-compatible room-temperature qubits, manipulating quantum entanglement using voltage control, and quantum solar cells. His work on voltage-tunable quantum dots (VTQDs), quantum-enhanced biosensors, and exceptional point physics has been groundbreaking. Furthermore, Dr. Chowdhury is advancing the understanding of neuromorphic computing and brain-inspired physics using Non-equilibrium Green’s Function (NEGF) techniques.

Research Skills 🛠️

Dr. Chowdhury possesses a wide range of research skills, including theoretical modeling, experimental fabrication, and quantum device simulation. His expertise in the NEGF framework has facilitated the development of quantum simulators for various nanoelectronic applications. His work on quantum dots, nano-wire transistors, and nano-scale materials has provided insights into quantum transport and energy harvesting. His skillset also extends to quantum-enhanced sensing, bio-sensing, and strain-engineering of materials.

Teaching Experience 🍎

Dr. Chowdhury has contributed significantly to the education and mentoring of students in the fields of Quantum Mechanics, Nanotechnology, and Nanoscience. At IIT Kharagpur, he serves as a Senior Research Consultant, where he not only leads advanced research projects but also helps train the next generation of scientists and engineers in quantum physics and nanoelectronics. His ability to bridge the gap between theory and application makes him a highly respected figure in both teaching and research.

Awards and Honors 🏅

Dr. Chowdhury’s dedication and expertise have been recognized with several awards, including being named an IOP Trusted Reviewer (2022). His extensive contributions to quantum technology and nanoelectronics continue to earn him recognition within the scientific community.

Legacy and Future Contributions đź”®

Dr. Chowdhury is poised to continue making groundbreaking contributions in the fields of quantum technology, neuroscience-inspired computing, and nanoelectronics. His focus on quantum-based biosensors and exceptional-point-enhanced sensing could revolutionize healthcare diagnostics and environmental sensing. As he prepares to submit his monograph in 2025, Dr. Chowdhury’s legacy in the field of quantum physics will likely inspire future generations of researchers.

Citations📚

A total of 244 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations – 244
  • h-index   –    10
  • i10-index –    11

Publications Top Notes

Exceptional-Point-Enhanced Superior Sensing Using Asymmetric Coupled-Lossy-Resonator Based Optical Metasurface

  • Authors: Nag Chowdhury, B., Lahiri, P., Johnson, N.P., De La Rue, R.M., Lahiri, B.
    Journal: Laser and Photonics Reviews

Nonequilibrium VLS-grown stable ST12-Ge thin film on Si substrate: a study on strain-induced band engineering

  • Authors: Mandal, S., Nag Chowdhury, B., Tiwari, A., Banerjee, A., Chattopadhyay, S.
    Journal: Journal of Materials Science

Dual-Gate GaAs-Nanowire FET for Room Temperature Charge-Qubit Operation: A NEGF Approach

  • Authors: Nag Chowdhury, B., Chattopadhyay, S.
    Journal: Advanced Quantum Technologies

Development of substrate engineered Si-<111>/[100] Patterned Features by anisotropic wet etching with Pt/Pt3Si mask

  • Authors: Mandal, S., Das, C., Sikdar, S., Karmakar, A., Chattopadhyay, S.
    Journal: Materials Chemistry and Physics

Voltage-Tunable Quantum-Dot Array by Patterned Ge-Nanowire-Based Metal-Oxide-Semiconductor Devices

  • Authors: Sikdar, S., Nag Chowdhury, B., Saha, R., Chattopadhyay, S.
    Journal: Physical Review Applied

 

 

 

Ni Liu | Quantum Technologies | Best Extension Activity Award

Mrs. Ni Liu | Quantum Technologies | Best Extension Activity Award

Teacher at Shanxi University, China

Ni Liu, a 34-year-old female academic from Shanxi, China, is an Associate Professor at the Institute of Theoretical Physics of Shanxi University. With a PhD in Theoretical Physics from Shanxi University, her research primarily focuses on quantum optics, quantum computing, and condensed matter physics, especially in systems involving ultracold atoms and high-finesse optical cavities. Ni Liu has been involved in a range of pioneering theoretical and experimental work, contributing significantly to our understanding of quantum phase transitions and atom-photon interactions.

👨‍🎓 Profile

📚 Early Academic Pursuits

Ni Liu completed her BS in Physics at Taiyuan Normal University in 2008 and later earned her PhD in Theoretical Physics from the Institute of Theoretical Physics of Shanxi University (2008-2013). Her doctoral research, under the mentorship of Prof. Jiuqing Liang and Prof. Gang Chen, involved significant contributions to Dicke quantum phase transitions in open systems and the self-organization of Bose-Einstein condensates (BEC), laying the foundation for her future work in quantum optics.

🏫 Professional Endeavors

Ni Liu has been a prominent academic at Shanxi University since 2013. She began as a lecturer at the School of Physical and Electronic Engineering and later advanced to the role of Associate Professor at the Institute of Theoretical Physics. Over the years, she has gained significant recognition in both national and international academic communities for her theoretical work and contributions to quantum physics.

🔬 Contributions and Research Focus

Ni Liu’s research primarily revolves around the interaction between ultracold atoms and high-finesse optical cavities, exploring systems that bridge quantum optics and condensed matter physics. Her work in Dicke quantum phase transitions and nonlinear atom-photon interactions has broadened the understanding of quantum phase transitions, including in BEC-cavity systems. Liu has contributed to the theory behind Bose-Einstein condensates (BEC) in optomechanical cavities, where she has proposed novel quantum phase transitions and multi-component BEC systems.

đź’Ľ Research Grants & Funding

Ni Liu has been the principal investigator on several significant grants:

  • National Natural Science Foundation of China (2014-2017)
  • Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (2014-2016)
  • Natural Science Foundation of Shanxi Province (2017-2019) Additionally, she has been a key participant in several other collaborative projects, contributing to the advancement of experimental and theoretical quantum physics.

🌍 Collaborations and Partnerships

Ni Liu’s research has fostered collaborations with both national and international researchers. Her contributions to quantum optics and condensed matter physics have involved joint efforts with leading universities and research institutions in China and beyond. Her work is at the intersection of experimental physics and theoretical quantum mechanics, fostering collaboration between these disciplines.

Top Noted Publications

 

 

Zhiqing Bai | Machine Learning in Physics | Best Researcher Award

Ms. Zhiqing Bai | Machine Learning in Physics | Best Researcher Award

Suzhou Institute of Nano-Tech and Nano-Bionics,CAS | China

👨‍🎓 Profile

Early Academic Pursuits 🎓

Ms. Zhiqing Bai began her academic journey with a strong foundation in Textile Engineering at Donghua University, where she completed both her Master’s (2016–2018) and PhD (2018–2023) studies. Her interest in fiber sensing and wearable technology developed early on, which became the focus of her later research. Her expertise expanded as he pursued joint PhD studies in Electrical and Computer Engineering at the National University of Singapore from 2021 to 2022, broadening her understanding of smart materials and energy harvesting systems.

Professional Endeavors 🔬

Since October 2023, Bai has been serving as a Research Fellow at the Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS). Her work spans multiple innovative fields, including fiber sensing, functional iongels, tactile sensors, and the development of wearable intelligent perception systems. Bai’s research has earned recognition through various academic leadership roles, including leader positions for numerous prestigious national research projects, such as the China National Postdoctoral Program and the National Natural Science Foundation of China.

🔬 Contributions and Research Focus

Zhiqing Bai’s research is centered on advancing triboelectric nanogenerators and interactive sensing technologies. Her pioneering work includes:

  • Development of eco-friendly nanocomposite fabrics for energy harvesting.
  • Creation of polyionic ecological skins for robust self-powered sensing.
  • Exploring bionic e-skin for enhanced robotic perception.

Impact and Influence 🌟

Bai’s work has significantly advanced the fields of wearable electronics and energy harvesting, with a strong focus on improving user interaction and sensor capabilities. Her designs for biocomposite materials and eco-friendly wearable technologies are paving the way for the next generation of smart textiles. Bai’s research has already influenced both academia and industry, attracting numerous citations and establishing her as a leading innovator in functional textiles.

Academic Cites 📚

Her research has resulted in numerous high-impact papers, with many published in journals such as Nano Energy, Advanced Functional Materials, and ACS Applied Materials & Interfaces. Bai’s work has been widely cited in the fields of triboelectric nanogenerators and wearable electronics, cementing her influence in the scientific community. Her contributions to multi-directional droplet sliding sensing and bionic e-skin technology have set the foundation for future developments in robotic perception and wearable devices.

Technical Skills 🛠️

Bai’s technical expertise encompasses fiber sensing, triboelectric nanogenerators (TENGs), polymeric materials, wearable sensors, and sustainable materials. She has extensive experience in designing and fabricating stretchable electronics, transparent power sources, and eco-friendly nanocomposites. Her ability to integrate interdisciplinary knowledge, including electrical engineering, textile engineering, and material science, makes her a standout researcher in the field of smart textiles and wearable technologies.

Teaching Experience 📚

Throughout her academic career, Bai has gained significant teaching experience, particularly in her role as a Research Assistant at the Suzhou Institute of Nano-Tech and Nano-Bionics. In this capacity, she has mentored graduate students and contributed to academic seminars, sharing her expertise on energy harvesting and wearable sensor systems. Bai’s role as a leader in various national research projects also involves providing guidance to young researchers, helping them grow and succeed in cutting-edge fields.

Top Noted Publications

Constructing high-efficiency stretchable-breathable triboelectric fabric for biomechanical energy harvesting and intelligent sensing
  • Authors: Xu, Y.; Bai, Z.; Xu, G.
    Journal: Nano Energy
    Year: 2023
Constructing a versatile hybrid harvester for efficient power generation, detection and clean water collection
  • Authors: Xu, Y.; Bai, Z.; Xu, G.; Shen, H.
    Journal: Nano Energy
    Year: 2022
Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing
  • Authors: Bai, Z.; He, T.; Zhang, Z.; Xu, Y.; Zhang, Z.; Shi, Q.; Yang, Y.; Zhou, B.; Zhu, M.; Guo, J. et al.
    Journal: Nano Energy
    Year: 2022
Elastic Textile Threads for Fog Harvesting
  • Authors: Nguyen, L.T.; Bai, Z.; Zhu, J.; Gao, C.; Zhang, B.; Guo, J.
    Journal: Langmuir
    Year: 2022
Enhancing Fog Harvest Efficiency by 3D Filament Tree and Elastic Space Fabric
  • Authors: Nguyen, L.T.; Bai, Z.; Zhu, J.; Gao, C.; Luu, H.; Zhang, B.; Guo, J.
    Journal: ACS Sustainable Chemistry and Engineering
    Year: 2022