Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Prof. Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Professor at National Taiwan Ocean University | Taiwan

Dr. Sheng Hsiung Chang is a Professor at the National Taiwan Ocean University. His extensive career in academia and research is marked by significant roles in leading institutions such as Chung Yuan Christian University (CYCU) and National Central University. Dr. Chang’s work has spanned across several pivotal research areas, particularly in semiconductor physics, optical physics, and perovskite optoelectronic devices. His achievements not only demonstrate his technical expertise but also highlight his commitment to academic leadership, mentorship, and advancing scientific knowledge.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Chang’s academic journey began with his postdoctoral research roles, first at Academia Sinica (2008-2010) and later at National Central University (2010-2012), where he gained foundational experience in semiconductor and optical physics. During these early years, he developed a strong interest in light-material interactions and functional thin films, fields that would shape his future research directions. His foundational work in nanotechnology and optoelectronics established the groundwork for his later academic and research career.

Professional Endeavors 🌍

Dr. Chang has held pivotal roles in academia, including Associate Professor and Professor at CYCU, where he also served as the Director of the Career Service Center (2020-2021). These positions reflect his commitment to fostering both the research and professional development of students. Additionally, he has contributed to the scientific community as an Editorial Board Member for journals such as Nanotechnology and Physics Bimonthly.

He has also demonstrated leadership in academic societies, serving as Vice Chairman (2021-2024) and Secretary General (2019-2020) of the Taiwan Vacuum Society. This involvement shows his dedication not only to research but also to promoting collaboration and innovation within the scientific community.

Contributions and Research Focus 🔬

Dr. Chang’s research is centered around perovskite optoelectronic devices, light-material interactions, plasmonic devices, nonlinear optics, and functional thin films. He is currently the Principal Investigator for various research projects funded by the National Science and Technology Council (NSTC) and the Ministry of Science and Technology (MOST). His groundbreaking work on perovskite thin films and their applications in photovoltaic cells is pushing the boundaries of renewable energy technologies. Through projects that explore optical coupling, material interfaces, and energy harvesting, Dr. Chang’s research is expected to revolutionize the optoelectronics field.

Impact and Influence 🌍

Dr. Chang’s contributions to the scientific community have had far-reaching implications, particularly in the area of perovskite solar cells. His work on improving photovoltaic performance and investigating interfacial contacts between organic and inorganic materials has the potential to enhance solar cell efficiency and sustainability. He is a key player in advancing technologies related to energy conversion, helping to foster sustainable solutions to global energy challenges. His leadership roles in academic societies have also expanded his influence and outreach in the scientific community.

Academic Citations 📈

Dr. Chang has an impressive publication record, with recent articles in high-impact journals such as Nanotechnology, Synthetic Metals, and Materials Science in Semiconductor Processing. His work is frequently cited by fellow researchers in the field of optoelectronics, particularly his studies on perovskite materials and their optical properties. These citations underscore the significance and influence of his research in both academia and industry.

Research Skills 🧑‍🔬

Dr. Chang possesses an extensive skill set in semiconductor physics, optical physics experiments, and theoretical computations. His research involves complex techniques such as material synthesis, thin film fabrication, and optical characterization. He has a deep understanding of light-matter interactions and their application to next-generation devices like solar cells and plasmonic devices. Additionally, his ability to bridge experimental techniques with theoretical models allows him to tackle complex challenges in material design and optoelectronic applications.

Teaching Experience 🏫

In his roles as a Professor and Associate Professor, Dr. Chang has mentored numerous graduate and postgraduate students in their research pursuits. His teaching approach is centered around encouraging critical thinking, innovation, and hands-on experimentation. His experience in guiding students and fostering academic growth aligns with his belief in the importance of collaboration and mentorship within academic settings. He also plays an active role in career development, helping students transition into the professional world with a strong foundation in research and industry-related skills.

Awards and Honors 🏆

Throughout his career, Dr. Chang has been the recipient of several prestigious awards and honors, recognizing his contributions to the fields of optical physics, semiconductor research, and perovskite optoelectronics. His ongoing recognition as a leader in nanotechnology and materials science reflects his consistent pursuit of excellence in both academic research and scientific innovation.

Legacy and Future Contributions 🔮

Dr. Chang’s work is poised to leave a lasting impact on the scientific community, particularly in the field of renewable energy and optoelectronics. As the principal investigator of major research projects, he is advancing the efficiency and sustainability of perovskite-based technologies, paving the way for affordable and efficient solar energy solutions. Dr. Chang’s future contributions to nanomaterials and functional thin films will likely continue to inspire scientific innovation, technological advancements, and environmental sustainability for years to come.

Publications Top Notes

Long room-temperature valley lifetimes of localized excitons in MoS2 quantum dots

  • Authors: H. Wang, Y. Chen, T.Y. Pan, Y. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Structural and excitonic properties of the polycrystalline FAPbI3 thin films, and their photovoltaic responses

  • Authors: Y. Huang, I.J. Yen, C. Tseng, A. Chandel, S.H. Chang
    Journal: Nanotechnology
    Year: 2024

Observations of two-dimensional electron gases in AlGaN/GaN high-electron-mobility transistors using up-converted photoluminescence excitation

  • Authors: Y. Chen, L. Chen, C.B. Wu, Y.J. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Efficient Optical Coupling between Dielectric Strip Waveguides and a Plasmonic Trench Waveguide

  • Authors: J. Wu, A. Chandel, C. Chuang, S.H. Chang
    Journal: Photonics
    Year: 2024

Enhancing the photovoltaic responses of MAPbI3 poly-crystalline perovskite films via adjusting the properties of PEDOT:PSS hole transport material with a low-polarity solvent treatment process

  • Authors: C. Tsai, S.N. Manjunatha, M. Sharma, L.B. Chang, C. Chang
    Journal: Materials Science in Semiconductor Processing
    Year: 2024

 

Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Mrs. Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Research Scholar at National Institute of Technology Warangal | India

Ramadevi Suguru Pathinti is currently pursuing her Ph.D. in Physics at the National Institute of Technology, Warangal, India, specializing in Materials Science with a focus on soft matter research. Her academic journey spans from her M.Sc. in Physics to her ongoing doctoral studies. Ramadevi has made significant contributions in the field of nanomaterials and smart materials, particularly in integrating liquid crystals with metal oxides for the development of advanced gas sensors and UV photodetectors.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Ramadevi’s academic journey began at Rayalaseema University, Kurnool, India, where she pursued her M.Sc. in Physics with a specialization in Electronics, securing a CGPA of 9.1/10. She also holds a B.Sc. in Mathematics, Physics, and Computer Science. Her strong academic foundation laid the groundwork for her pioneering research in Materials Science during her doctoral studies at NIT, Warangal.

Professional Endeavors 💼

In her professional journey, Ramadevi has excelled in scientific research within both academic and industrial contexts. She has contributed to the development of thin film devices for smart window technologies, gas sensors, and photodetectors. Her Ph.D. research focuses on integrating liquid crystal-functionalized metal oxides to enhance the optical properties and responsivity of sensors, enabling advancements in environmental sensing and optoelectronic devices.

Contributions and Research Focus 🔬

Ramadevi’s research is centered on the synthesis of nanomaterials and their integration into innovative smart materials. She has worked extensively on fabricating gas sensors and UV photodetectors using liquid crystal-metal oxide hybrids. Notably, her work on smart windows is groundbreaking, where she has discovered novel optical switching behaviors and light modulation techniques, paving the way for energy-saving technologies. Furthermore, her synthesis methods like sol-gel and hydrothermal techniques have contributed to enhanced material properties for sensing applications.

Impact and Influence 🌍

Her research has already made a considerable impact in the fields of environmental sensing and smart material development, particularly in the energy-efficient technologies sector. Ramadevi’s work has the potential to revolutionize how we detect gases, modulate light, and develop self-powered sensors, with applications ranging from smart windows to sensitive environmental monitoring systems. Through her research, she aims to bring forth sustainable technologies that are adaptable to changing global needs.

Academic Cites 📚

Ramadevi has authored several impactful publications in top-tier peer-reviewed journals, contributing to the fields of materials science and optoelectronics. Her articles in journals like the Journal of Molecular Liquids, Journal of Alloys and Compounds, and Advanced Material Technology have contributed to the scientific community’s understanding of the integration of nanomaterials and liquid crystals for innovative devices. She has also presented her research at national and international conferences, further strengthening her academic profile.

Research Skills 🛠

Ramadevi has developed extensive technical expertise in nanomaterial synthesis using methods like sol-gel and hydrothermal techniques. She is proficient in device fabrication, particularly thin film devices for gas sensing and UV photodetector applications. Additionally, she has hands-on experience with advanced research instruments, including optical polarizing microscopes, fluorescence microscopes, and spin coating systems, which enhance her ability to conduct high-quality research and device development.

Teaching Experience 📚

In addition to her research, Ramadevi has taught practical sessions for both M.Sc. (Tech) Physics and B.Tech students. She has handled laboratory work, where she imparted valuable knowledge on experimental techniques and device characterization to budding scientists. This experience has helped her develop strong interpersonal and communication skills, which are essential for future academic and industrial collaborations.

Awards and Honors 🏆

Ramadevi’s excellence has been acknowledged through the Joint CSIR-UGC National Eligibility Test (NET) for Junior Research Fellowship (JRF) in 2017, where she secured an impressive All India Rank of 57. This achievement is a testament to her academic aptitude and research potential.

Legacy and Future Contributions 🌟

Looking forward, Ramadevi aims to make lasting contributions to the field of materials science and nanotechnology. Her research is poised to drive innovations in smart materials, sustainable technologies, and energy-efficient devices, with far-reaching implications for environmental sensing, smart window technologies, and optoelectronics. With her interdisciplinary approach and collaborative nature, she is well-positioned to make significant advancements in both academic and industrial research.

Publications Top Notes

Label-free detection of Aβ-42: a liquid crystal droplet approach for Alzheimer’s disease diagnosis

  • Authors: Saumya Ranjan Pradhan, Ramadevi Suguru Pathinti, Ramesh Kandimalla, Krishnakanth Chithari, Madhava Rao Veeramalla N., Jayalakshmi Vallamkondu
    Journal: RSC Advances
    Year: 2024

Enhanced ethanol gas detection using TiO2 nanorods dispersed in cholesteric liquid crystal: Synthesis, characterization, and sensing performance

  • Authors: Ramadevi Suguru Pathinti, Sunil Gavaskar Dasari, Buchaiah Gollapelli, Sreedevi Gogula, Ramana Reddy M.V., Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2024

Enhanced security through dye-doped cholesteric liquid crystal shells for anti-counterfeiting

  • Authors: Chris Mathew, Ramadevi Suguru Pathinti, Saumya Ranjan Pradhan, Buchaiah Gollapelli, Krishnakanth Chithari, Mrittika Ghosh, Ashok Nandam, Jayalakshmi Vallamkondu
    Journal: Optical Materials
    Year: 2024

ZnO nanoparticles dispersed cholesteric liquid crystal based smart window for energy saving application

  • Authors: Ramadevi Suguru Pathinti, Arun Kumar Tatipamula, Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2023

Energy saving, transparency changing thermochromism in dye-doped cholesteric liquid crystals for smart windows

  • Authors: Ramadevi Suguru Pathinti, Buchaiah Gollapelli, Saumya Ranjan Pradhan, Jayalakshmi Vallamkondu
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2023

 

Sanjiv Kane | Experimental methods | Best Innovation Award

Mr. Sanjiv Kane | Experimental methods | Best Innovation Award

Scientific Officer at Raja Ramanna Centre for Advanced Technology | India

A Distinguished Scientific Officer in Applied Physics and Synchrotron Radiation

Sanjiv R. Kane is an experienced Scientific Officer with over 25 years of expertise in applied physics, particularly in synchrotron radiation and advanced instrumentation. He is currently pursuing a Ph.D. in Applied Physics at the Maharaja Sayajirao University of Baroda (2023–Present), focusing on advancing the fields of control systems, data acquisition software, and beamline technology. His proven experience spans across several prominent research facilities, including the Indus Synchrotron Facility and CERN, where he has contributed immensely to both research and technology development.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Sanjiv started his academic journey by earning a Bachelor of Science in Physics with minors in Mathematics and Statistics from the University of Poona (1984–1987). He further pursued his Master of Science in Applied Physics at the University of Poona (1987–1989), where he laid the foundation for his extensive career in applied physics and instrumentation design.

💼 Professional Endeavors

 Since June 1999, Sanjiv has served as a Scientific Officer at the Indus Synchrotron Facility, Raja Ramanna Centre for Advanced Technology, Indore, India, where he has worked on numerous high-profile projects. His notable contributions include the development of VME-based control systems, PLC safety interlocks, and the automation of beamline operations. His efforts in designing and deploying data acquisition systems using National Instruments LabVIEW® have been crucial in advancing the synchrotron facility’s capabilities. Additionally, he has been instrumental in designing FPGA-based DAQ systems and PXI system deployments for beamline control.

🔬 Contributions and Research Focus

Sanjiv’s research is centered on synchrotron radiation, particularly in the design and development of control systems for X-ray beamlines and instrumentation. His work on extended X-ray absorption fine structure (EXAFS), soft X-ray reflectivity, and nonlinear behavior of piezoceramic actuators has gained significant attention in the field. He has co-authored several important publications, contributing to the advancement of both material characterization and synchrotron beamline technology.

🌍 Impact and Influence

 Sanjiv’s contributions have made a significant impact on synchrotron radiation research, particularly in beamline automation and data acquisition systems. His international collaborations at CERN and Indus Synchrotron Facility have helped improve the performance of synchrotron radiation facilities, making them more efficient and accessible to researchers worldwide. His papers and conference presentations continue to influence the direction of research in synchrotron instrumentation and applied physics.

📚 Academic Cites

Sanjiv’s work has been widely cited in notable academic journals and has been presented at prestigious international conferences. His publications in journals such as Nuclear Instruments and Methods in Physics Research, Rev. Sci. Instrum., and Mechanics of Advanced Materials and Structures have contributed significantly to the development of synchrotron radiation technologies. Notable works include:

  1. “Extended X-ray Absorption Fine Structure (EXAFS) measurement of Cu metal foil using thermal wave detector: A comparative study.”
  2. “A versatile beamline for soft x-ray reflectivity, absorption, and fluorescence measurements at Indus-2 synchrotron source.”
  3. “Electric field-induced nonlinear behavior of lead zirconate titanate piezoceramic actuators in bending mode.”

🔧 Research Skills

Sanjiv’s technical expertise spans several areas including:

  • Instrumentation & Control: VME systems, PLC programming (Siemens Step 7), microcontroller-based systems (ARM, 8051).
  • Programming Languages: Proficient in LabVIEW®, C/C++, Python, Visual Basic, and VEEPRO.
  • Design & Simulation: Expertise in Altium Designer, Protel, ISE (FPGA design), NI Multisim, and Electronic Workbench.
  • Data Acquisition & Analysis: In-depth experience in developing FPGA-based DAQ systems, PXI systems, and database management using Microsoft Access.

👨‍🏫 Teaching Experience

Sanjiv has extensive experience in training and mentoring junior researchers and scientists in the areas of control systems and instrumentation for synchrotron radiation. His involvement in numerous workshops, symposia, and conferences allows him to share his expertise with others in the field.

🌱 Legacy and Future Contributions

Sanjiv’s legacy lies in his contributions to synchrotron radiation research, particularly in improving beamline automation and X-ray measurement systems. As he continues his Ph.D. journey, his future contributions will likely focus on advanced control systems and enhancements to synchrotron facilities. His ongoing work promises to make lasting improvements in the development of synchrotron instrumentation that will support the scientific community in material science, biotechnology, and physics research.

Publications Top Notes

Characterizing Pyroelectric Detectors for Quantitative Synchrotron Radiation Measurements

  • Authors: SR Kane, RW Whatmore, MN Singh, S Satapathy, PK Jha, PK Mehta
    Journal: Sensors and Actuators A: Physical
    Year: 2025

Development of Piezo-actuated X-ray Deformable Mirror for Vertical Focusing of Synchrotron Radiation at Indus-2

  • Authors: HSK Jha, AK Biswas, MK Swami, A Sagdeo, C Mukherjee, SR Kane, …
    Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators
    Year: 2024

Green Protocol For Synthesis of Cu2O@g‐C3N4 Photocatalysts For 1, 4 Radical Oxidative Addition of Trans Crotonaldehyde Under Visible Light Condition

  • Authors: BA Maru, VJ Rao, S Kane, UK Goutam, CK Modi
    Journal: ChemPhotoChem
    Year: 2024

Development and Initial Results of X-ray Magnetic Circular Dichroism Beamline at Indus-2 Synchrotron Source

  • Authors: B Kiran, SR Garg, CK Garg, S Lal, SK Nath, R Jangir, SR Kane, …
    Journal: Proceedings of the Theme Meeting on Spectroscopy Using Indus Synchrotron
    Year: 2023

Facile Single-pot Synthesis of Fe-doped Nitrogen-rich Graphitic Carbon Nitride (Fe2O3/g-C3N4) Bifunctional Photocatalysts Derived from Urea for White LED-mediated Aldol Condensation Reaction

  • Authors: BA Maru, R Joshi, VJ Rao, SR Kane, CK Modi
    Journal: Inorganic Chemistry Communications
    Year: 2025