Madeha Awad | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Madeha Awad | Experimental methods | Best Researcher Award

Sohag university  | Egypt

Dr. Madeha Ahmed Aboelfadl Awad is an Associate Professor in the Physics Department at the Faculty of Science, Sohag University, Egypt. With a career spanning nearly two decades in materials science and nanotechnology, she has become a prominent figure in the synthesis and characterization of advanced nanostructured materials for industrial and environmental applications. Dr. Awad is recognized for her dedication to both scientific research and academic development, contributing significantly to the Egyptian scientific community.

👨‍🎓Profile

Google scholar

Scopus

🎓 Early Academic Pursuits

Dr. Awad began her academic journey with a B.Sc. in Physics from Sohag University in 2003, graduating with a very good grade. She went on to earn an M.Sc. in Solid State Physics in 2008, where she investigated chalcogenide systems a foundation that set the stage for her specialization in material sciences. Her academic excellence continued with a Ph.D. in Nanomaterials Physics in 2015, focusing on the growth and characterization of ZnO-based nanomaterials, a vital material in modern optoelectronic and energy applications.

🧪 Professional Endeavors

Since joining the Sohag University faculty in 2004 as a demonstrator, Dr. Awad has steadily progressed through academic ranks, becoming an Assistant Lecturer (2013), Lecturer (2015), and finally Associate Professor (2020). Her career reflects a sustained commitment to both academic excellence and institutional service. In addition to her teaching and research, she has held leadership roles, including Director of the Credibility and Intellectual Property Unit, playing a vital part in raising awareness about intellectual property rights and research ethics.

🔬 Contributions and Research Focus

Dr. Awad’s primary research is rooted in the synthesis of nanomaterials across various dimensions 0D, 1D, 2D, and 3D using advanced techniques like sputtering, physical vapor deposition (PVD), chemical vapor deposition (CVD), and electron beam evaporation. Her work emphasizes characterization using state-of-the-art tools such as XRD, XPS, SEM, TEM, AFM, DSC, and TGA, making her a versatile experimental physicist. Her research outcomes are directly applied to real-world challenges in solar energy, water purification, and biomedicine.

🌍 Impact and Influence

Dr. Awad’s contributions are particularly relevant to sustainable development and clean energy. Her research on photocatalytic materials, metal oxides, and optoelectronic devices supports the transition to greener technologies. As a result, her work has an evident impact on addressing climate change, environmental pollution, and public health challenges.

📚 Academic Publications

She has authored multiple peer-reviewed publications in international scientific journals, including Physica Scripta and the Journal of Sustainable Food, Water, Energy and Environment. Her recent works in 2025 reflect continued scholarly productivity and a commitment to interdisciplinary research. These publications highlight the practical application of her materials in pollution degradation, photodetectors, and biological growth studies.

🧠 Research Skills

Dr. Awad demonstrates exceptional skills in materials characterization, experimental design, and project management. She is adept at conducting analytical tests using complex laboratory equipment and integrates findings across multiple techniques to evaluate material performance. Her ability to write and manage research projects related to energy and water positions her as a key contributor in applied research arenas.

👩‍🏫 Teaching Experience

Beyond the lab, Dr. Awad is a dedicated educator, delivering theoretical physics courses to undergraduate students and supervising graduate theses and senior projects. She also plays an instrumental role in developing laboratory infrastructure, guiding demonstrators, and innovating undergraduate experiments, reflecting her strong commitment to academic excellence and mentorship.

🏆 Awards and Honors

Dr. Awad has earned respect not only through research but also through her administrative and academic service. She was appointed to the Scientific Committee of the Faculty of Science, where she helped establish a scientific journal for the Physics Department an initiative considered pioneering within her institution. While specific awards are not listed, her appointments and leadership roles signify a high level of institutional trust and recognition.

🚀 Legacy and Future Contributions

As a leader in nanomaterials research in Upper Egypt, Dr. Awad is shaping the future of industrially relevant and sustainable materials. Her contributions to intellectual property awareness, research capacity-building, and student mentorship lay a strong foundation for future generations of scientists. With continued focus on international collaboration, patentable innovations, and expanded research funding, her work is poised to achieve greater global impact in the years ahead.

Top Noted Publications

Photocatalytic characteristics of indium oxide, copper oxide and indium oxide/copper oxide thin films on plastic waste substrates for organic pollutants degradation

  • Authors: M. Mohery, S. H. Mohamed, K. A. Hamam, A. Mindil, S. Landsberger, M. A. Awad
    Journal: Physica Scripta
    Year: 2025

Influence of oxygen flow rates on the optoelectronic properties SnO₂ thin films

  • Authors: M. A. Awad, Eman R. Abaza, Essam R. Shaaban
    Journal: Sohag Journal of Science
    Year: 2025

A comparison between the effect of zinc oxide and zinc oxide nanoparticles on the growth and some metabolic processes of Cosmarium sp

  • Authors: Asmaa Bakr, M. A. Awad
    Journal: Journal of Sustainable Food, Water, Energy and Environment
    Year: 2025

Highly sensitive TiO₂ based photodetector for environmental sensing applications

  • Authors: S. H. Mohamed, Mohamed Rabia, M. A. Awad, Mohamed Asran Hassan
    Journal: Journal of Sustainable Food, Water, Energy and Environment
    Year: 2025

Optoelectronic characteristics of In₂O₃/CuO thin films for enhanced vis‑light photodetector

  • Authors: A. M. Abd El‑Rahman, S. H. Mohamed, A. Ibrahim, Ali A. Alhazime, M. A. Awad
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2024

 

Prof. Wang Fengyun | Experimental methods | Best Researcher Award

Prof. Wang Fengyun | Experimental methods | Best Researcher Award

Professor at Qingdao university | China

Fengyun Wang is an accomplished scientist whose interdisciplinary research bridges chemistry, physics, materials science, and various engineering disciplines. With a focus on cutting-edge materials such as low-dimensional metal oxide semiconductors, perovskites, and Mxenes, Wang has contributed significantly to the development of next-generation bioelectronics, photonics, and energy storage devices.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Wang’s academic journey began with a strong foundation in the fundamental sciences. Through early exposure to materials synthesis and characterization, Wang developed a passion for understanding the physical and chemical behavior of novel semiconductor materials. This passion laid the groundwork for a research path centered on innovative material solutions for high-tech applications.

🧑‍🔬 Professional Endeavors

Wang has presided over eight national and provincial research projects, playing a pivotal role in exploring topics ranging from quantum dot/metal oxide heterojunctions for photovoltaic transistors to the controllable preparation of III–V semiconductor nanowires. These projects are backed by prestigious institutions like the National Natural Science Foundation of China and the Shandong Province Key R&D Program.

🔬 Contributions and Research Focus

Dr. Wang’s research contributions lie primarily in the synthesis and application of low-dimensional semiconductor materials. By integrating disciplines, Wang has developed metal oxide nanofibers, indium phosphide nanowires, and multifaceted nanostructures for use in field-effect transistors, UV detectors, and flexible solar cells. These innovations address critical challenges in energy harvesting, optoelectronics, and next-gen computing.

🌍 Impact and Influence

Fengyun Wang’s work has earned widespread recognition. With over 80 SCI-indexed publications in esteemed journals such as Advanced Materials, Advanced Functional Materials, IEEE Electron Device Letters, and Nano Research, Wang’s findings have been cited more than 2400 times, showcasing global academic impact. The research has pushed boundaries in device efficiency and material integration across multiple application areas.

📚 Academic Publications & Citations

  • 80+ SCI papers published internationally

  • Journals include Adv. Mater., Adv. Funct. Mater., IEEE Electron Device Lett., and Nano Res.

  • Total citations: 2400+, underscoring the relevance and reliability of the research

  • Invited author of the monograph Semiconducting Metal Oxide Thin-Film Transistors, published by the British Physical Society

🧪 Research Skills

Dr. Fengyun Wang possesses advanced expertise in the synthesis of low-dimensional materials, including 1D and 2D structures, and the fabrication of nanofibers and nanowires. His skills extend to quantum dot integration, heterojunction construction, and the design and optimization of thin-film transistors. Additionally, he excels in engineering optoelectronic and photovoltaic devices. These capabilities enable him to lead and execute highly complex, interdisciplinary projects at the forefront of materials science and electronic device innovation.

👨‍🏫 Teaching Experience

Though specifics on teaching are not provided, Wang’s leadership in multiple national-level projects and publication of an academic monograph suggests active involvement in mentoring graduate students, postdocs, and likely contributing to advanced university-level courses in semiconductor physics, nanomaterials, and optoelectronics.

🏅 Awards and Honors

Dr. Fengyun Wang holds 5 authorized national invention patents, showcasing his originality and the practical impact of his innovations. He has been selected for key provincial talent programs, including the prestigious Shandong Excellent Youth, recognizing his potential and contributions to scientific advancement. Additionally, he is a recognized author by international scientific societies, reflecting his scholarly excellence and influence in the global research community.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Fengyun Wang is poised to continue leading transformative research in material innovation, particularly in the realm of flexible and high-efficiency electronics. With a growing body of influential work, patented technologies, and academic outreach, Wang’s future contributions will likely shape the next generation of green energy solutions and bio-integrated electronics.

Publications Top Notes

Integrated Sensing-Memory-Computing Artificial Tactile System for Physiological Signal Processing Based on ITO Nanowire Synaptic Transistors

  • Authors: Y. Zhang, J. Xu, M. Wei, S.A. Ramakrishna, F. Wang (Fengyun Wang)
    Journal: ACS Applied Nano Materials
    Year: 2025

Negative Photoconductivity in Nanowires/QDs Heterojunction Network for Neuromorphic Visual Perception

  • Authors: S. Xin, T. Wang, K. Dou, Y. Zhou, F. Wang (Fengyun Wang)
    Journal: Advanced Functional Materials
    Year: 2025

Bionic Gustatory Receptor for pH Identification Based on ZnSnO Nanofiber Synaptic Transistor

  • Authors: P. Xu, W. Zhang, F. Wang (Fengyun Wang)
    Journal: IEEE Electron Device Letters
    Year: 2025

Flexible Electrolyte-Gated Transistor Based on InZnSnO Nanowires for Self-Adaptive Applications

  • Authors: L. Zheng, Z. Liu, S. Xin, R. Seeram, F. Wang (Fengyun Wang)
    Journal: Applied Materials Today
    Year: 2024

Fast Ultraviolet Detection Response Achieved in High-Quality Cs₃Bi₂Br₉ Single Crystals Grown by an Improved Anti-Solvent Method

  • Authors: T. Wang, S. Xin, Y. Liu, B. Teng, S. Ji
    Journal: Journal of Materials Chemistry C
    Year: 2024