Wang Hay Kan | Data Analysis Techniques | Best Researcher Award

Prof. Wang Hay Kan | Data Analysis Techniques | Best Researcher Award

Associate Researcher at China Spallation Neutron Source | China

Dr. Wang Hay (Jack) Kan is an accomplished Associate Professor at the China Spallation Neutron Source (CSNS), Institute of High Energy Physics, Chinese Academy of Sciences. With a research portfolio spanning solid-state chemistry, neutron scattering, and energy materials, he is recognized for advancing the field of energy storage and conversion. Holding a PhD from the University of Calgary, Dr. Kan combines academic rigor with real-world innovation, reflected in over 90 peer-reviewed publications, numerous patents, and extensive international collaborations. His research integrates in-situ neutron/X-ray techniques with advanced material design, making him a vital figure in next-gen energy solutions.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Kan’s academic path began with a First-Class Honors B.Sc. in Chemistry from HKUST, where he studied metal-organic frameworks under Prof. Ian D. Williams. He then pursued a Master’s at the University of Waterloo under the guidance of Prof. Linda Nazar, focusing on LiMPO₄ cathode materials. His academic excellence continued with a PhD in Chemistry from the University of Calgary, where he developed mixed conductors for SOFCs under Prof. V. Thangadurai. These formative years established his foundation in solid-state electrochemistry, crystallography, and materials engineering—skills critical for his later breakthroughs in energy storage research.

👨‍💼 Professional Endeavors

Dr. Kan has served as an Associate Professor at CSNS since 2015 and held visiting scientist positions at prestigious institutions like Lawrence Berkeley National Lab, ANSTO, and HKUST. He also served as Guest Professor at Beijing Jiaotong University and Tianjin University, contributing to both research and graduate mentorship. His professional journey blends academic research, national lab collaboration, and industry partnerships with leaders like CATL. His leadership extends to graduate advising, technical committee service, and international conference organization, showcasing a comprehensive contribution to both scientific advancement and institutional development.

🔬 Contributions and Research Focus

Dr. Kan’s research centers on energy materials, including lithium/sodium-ion batteries, solid oxide fuel cells (SOFCs), and neutron diffraction techniques. He is an expert in in-situ structural characterization, focusing on meta-stable phases, oxygen redox reactions, and high-capacity cathode design. He pioneered novel composite materials such as Li-rich rock-salt oxides and dual-polyanion cathodes, contributing significantly to electrochemical innovation. Through his patents and publications, he has developed advanced electrolytes, neutron scattering hardware, and regeneration strategies for aged batteries, positioning himself as a leading materials chemist bridging basic science and application.

🌍 Impact and Influence

With an h-index of 35 and over 4400 citations, Dr. Kan’s work has shaped the fields of battery chemistry and neutron-based materials analysis. His leadership in establishing the Platform for Electrochemical and Neutron Studies (PANs) at CSNS has enabled transformative research infrastructure in China. His lectures across institutions in the USA, Australia, Korea, and China, and collaborations with SSRL and ANSTO, demonstrate global recognition. He has significantly influenced graduate education, national science policy, and industry research directions through his funding projects, reviews, and committee roles. Dr. Kan is considered a bridge between fundamental discovery and industrial impact.

📚 Academic Cites

Dr. Kan has authored over 90 peer-reviewed articles in high-impact journals including JACS, Angewandte Chemie, RSC Advances, and J. Mater. Chem. A. His Google Scholar profile (h-index: 35, 4449 citations) reflects a growing influence, particularly in solid-state ionics and battery materials. His most cited works span from early contributions on LiFePO₄ morphology to recent innovations in Li-rich and dual-polyanion cathodes. He has also contributed chapters and conference abstracts to major symposia, cementing his role as a thought leader in electrochemical energy storage and neutron scattering applications.

🛠️ Research Skills

Dr. Kan excels in neutron diffraction, synchrotron X-ray scattering, electrochemistry, solid-state synthesis, and Rietveld refinement. He has developed novel in-situ cells for high-temperature and hydrothermal neutron scattering. His work involves crystal structure elucidation, electrical conductivity measurement, and catalytic performance evaluation under operando conditions. His facility with advanced instrumentation allows him to bridge microscopic structure with macroscopic performance in materials. Equally skilled in computational modeling, spectroscopy, and thermochemistry, Dr. Kan’s methodological versatility underpins his ability to innovate across disciplines.

🧑‍🏫 Teaching Experience

Dr. Kan has taught both undergraduate and graduate courses on energy storage and conversion systems at Beijing Jiaotong, Tianjin, and Foshan Universities. Earlier, he served as a teaching assistant at the University of Calgary and University of Waterloo, covering general, transition metal, and main group chemistry, as well as nanotechnology. His mentorship extends to graduate supervision, lab-based research training, and international collaboration guidance. He’s an active advisor and student chapter chair at CSNS, nurturing the next generation of electrochemists and materials scientists through an integrative and research-oriented pedagogy.

🏆 Awards and Honors

Dr. Kan has received over 30 awards, including the Ludo Frevel Crystallography Award, Young Research Fellowship (Asia-Oceania Neutron Scattering Association), and the Innovation Achievement Award from the Industrial Research Society of China. Notably, he received the Best Thesis Award at the 9th National Neutron Scattering Conference in 2023. He has been funded by NSFC, MOST, and provincial talent programs, highlighting his national recognition. His consistent award record from 2006 to 2025 reflects both academic excellence and sustained research impact, supported by international travel grants, fellowships, and scholarships.

🧭 Legacy and Future Contributions

Dr. Kan’s legacy is rooted in pioneering work at the interface of energy materials and neutron science. By establishing platforms like PANs, advancing in-situ techniques, and mentoring future scientists, he is shaping the next era of electrochemical research. His upcoming projects on hard carbon anodes and sodium-ion batteries will deepen understanding of ion transport and storage mechanisms. Through ongoing collaborations with industry leaders like CATL and national labs, Dr. Kan will continue driving innovation in energy sustainability. His trajectory promises enduring contributions to science, technology, and environmental resilience.

Publications Top Notes

High-Entropy V-Based Null Matrix Alloys─Short/Long-Range Structural Features, Chemical Stabilities, and Mechanical Properties

  • Authors: Man He, Chen Wang, Hua Yang, Dong-Ying Wu, Jey-Jau Lee, Xuan Huang, Hao Shen, Fangwei Wang, Maxim Avdeev, Wang Hay Kan
    Journal: ACS Applied Materials & Interfaces
    Year: 2025

A prismatic alkali-ion environment suppresses plateau hysteresis in lattice oxygen redox reactions

  • Authors: Hao Yu, Ang Gao, Xiaohui Rong, Shipeng Shen, Xinqi Zheng, Liqin Yan, Haibo Wang, Dan Su, Zilin Hu, Wang Hay Kan et al.
    Journal: Energy & Environmental Science
    Year: 2024

A Family of V-Based Null Matrix Alloys with Atomic and Mesoscopic Homogeneity

  • Authors: Man He, Chen Wang, Hua Yang, Dong-Ying Wu, Jey-Jau Lee, Fangwei Wang, Maxim Avdeev, Wang Hay Kan
    Journal: ACS Applied Engineering Materials
    Year: 2024

Author Correction: Stabilization of layered lithium-rich manganese oxide for anion exchange membrane fuel cells and water electrolysers

  • Authors: Xuepeng Zhong, Lijun Sui, Menghao Yang, Toshinari Koketsu, Malte Klingenhof, Sören Selve, Kyle G. Reeves, Chuangxin Ge, Lin Zhuang, Wang Hay Kan et al.
    Journal: Nature Catalysis
    Year: 2024

Stabilization of layered lithium-rich manganese oxide for anion exchange membrane fuel cells and water electrolysers

  • Authors: Xuepeng Zhong, Lijun Sui, Menghao Yang, Toshinari Koketsu, Malte Klingenhof, Sören Selve, Kyle G. Reeves, Chuangxin Ge, Lin Zhuang, Wang Hay Kan et al.
    Journal: Nature Catalysis
    Year: 2024

 

Kun Xiao | Data Analysis Techniques | Best Researcher Award

Prof. Kun Xiao | Data Analysis Techniques | Best Researcher Award

Professor at East China University of Technology | China

Professor Xiao Kun is a distinguished academic and researcher at the East China University of Technology, affiliated with the School of Geophysics and Measurement-Control Technology. With a career dedicated to advancing geophysical exploration, especially in unconventional energy resources and machine learning applications, Professor Xiao has earned national acclaim as a young scientific and technological talent and leading academic figure in Jiangxi Province. His professional journey is marked by innovation, academic leadership, and technical excellence, making him a significant contributor to China’s scientific community.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Professor Xiao embarked on his academic path at the China University of Geosciences (Beijing), where he majored in Geodetection and Information Technology. He completed his Ph.D. in Engineering in July 2015, laying a strong foundation in geophysics. His doctoral work focused on gas hydrate reservoir simulation and geophysical logging, an area he would continue to specialize in throughout his career.

👨‍🏫 Professional Endeavors

Since 2015, Professor Xiao has been affiliated with the East China University of Technology, progressing through the ranks from Lecturer to Associate Professor, and most recently to Professor in 2024. His work encompasses both teaching and advanced scientific research in geophysical exploration, with a strong focus on field experiments, numerical simulations, and interdisciplinary applications.

🔬 Contributions and Research Focus

Professor Xiao Kun’s core research centers on geophysical theory and method development, with a strong emphasis on the exploration of unconventional energy resources such as gas hydrates, coalbed methane (CBM), and shale gas. He specializes in applying machine learning techniques to geophysical logging and lithology identification, as well as conducting petrophysical property analysis and numerical simulations of complex reservoirs. He has successfully led over 20 major research projects funded by esteemed institutions including national key programs and provincial science foundations.

🌍 Impact and Influence

Professor Xiao Kun is a recognized thought leader in China’s geophysical research community, actively contributing as a communication review expert for prestigious institutions such as the Changjiang Scholars Program and the National Natural Science Foundation of China (NSFC). He also supports several provincial science and technology panels, reinforcing his role in shaping research directions. His expertise has had a significant impact on energy exploration policies, geophysical education, and the development of research strategies across various regions in China.

📚 Academic Citations and Publications

Professor Xiao has published over 60 academic papers, with more than 30 indexed by SCI/EI, spanning leading journals such as Geophysics, Acta Geophysica, Journal of Geophysics and Engineering, and Scientific Reports. His work has been cited across various scientific domains, highlighting his interdisciplinary impact in applied geophysics and data-driven modeling.

He has also authored one academic monograph, solidifying his contributions in the form of scholarly literature, and secured six national invention patents and six software copyrights.

🧠 Research Skills and Technical Expertise

Professor Xiao Kun possesses exceptional technical expertise in numerical modeling, reservoir simulation, and well-logging analysis, with a strong command of machine learning algorithms such as ensemble learning and extreme learning machines. His proficiency in multiphysics data integration and high-performance scientific computing empowers him to tackle complex subsurface challenges. These advanced skills allow him to develop innovative solutions in geophysical exploration, significantly contributing to energy sustainability research and the evolution of data-driven geoscience methodologies.

👨‍🏫 Teaching Experience

In addition to his research, Professor Xiao has over 9 years of teaching experience in undergraduate and postgraduate programs, mentoring students in geophysical methods, logging technologies, and scientific computing. He has also guided students to win three national competition awards, showing his dedication to academic mentorship and talent cultivation.

🏅 Awards and Honors

Professor Xiao Kun has received numerous prestigious accolades that highlight his national recognition and academic leadership. He was honored as a “Young Scientific and Technological Talent” by the Ministry of Natural Resources in 2023 and named a finalist for the “National Good Youth with Positive Energy” in 2022. As a Leading Academic Leader in Jiangxi Province, he also serves on editorial boards of top journals and is an active member of key scientific committees, demonstrating his broad influence in geophysical research and governance.

🚀 Legacy and Future Contributions

Professor Xiao Kun is poised to shape the next generation of geophysical research in China and beyond. His pioneering integration of AI-driven methodologies with traditional geophysical exploration techniques signifies a transformative advancement in the field. Looking ahead, his research is expected to play a vital role in areas such as green energy resource evaluation, AI-geoscience fusion, and data-driven decision-making in complex subsurface environments. With a strong foundation in both applied research and academic mentorship, Professor Xiao is committed to driving innovation, strengthening international research collaboration, and advancing the frontiers of scientific excellence in geophysics.

Top Noted Publications

Study on logging identification of sandstone-type uranium deposits based on ensemble learning in the Songliao Basin in Northeast China

  • Authors: Kun Xiao, Yichen Xu, Yaxin Yang, et al.
    Journal: Nuclear Science and Engineering
    Year: 2025

Numerical simulation of resistivity and saturation estimation of pore-type gas hydrate reservoirs in the permafrost region of the Qilian Mountains

  • Authors: Xudong Hu, Changchun Zou, Zhen Qin, Hai Yuan, Guo Song, Kun Xiao (Corresponding author)
    Journal: Journal of Geophysics and Engineering
    Year: 2024

Research progress on lithologic logging evaluation of uranium ore layers based on machine learning

  • Authors: Kun Xiao, Changwei Jiao, Yaxin Yang, et al.
    Journal: Science Technology and Engineering
    Year: 2025

Experimental study of relationship among acoustic wave, resistivity and fluid saturation in coalbed methane reservoir

  • Authors: Kun Xiao, Zhongyi Duan, Yaxin Yang, et al.
    Journal: Acta Geophysica
    Year: 2023

Automatic lithology identification of sandstone-type uranium deposit in Songliao Basin based on ensemble learning

  • Authors: Zhongyi Duan, Kun Xiao, Yaxin Yang, et al.
    Journal: Atomic Energy Science and Technology
    Year: 2023