Dejan Milošević | Interactions and fields | Best Researcher Award

Prof. Dr. Dejan Milošević | Interactions and fields | Best Researcher Award

Full professor of theoretical physics, University of Sarajevo, Bosnia and Herzegovina

👨‍🎓 Profile

Early Academic Pursuits 🎓

Dejan Milošević was born on July 5, 1959, in Sarajevo, Bosnia and Herzegovina. His academic journey began at the Faculty of Science, University of Sarajevo, where he studied Physics and completed his undergraduate degree in 1981. He furthered his education at the University of Belgrade, where he pursued postgraduate studies in Theoretical Physics, earning his M.Sc. in 1986 and Ph.D. in 1990. His doctoral thesis, titled “Atomic processes in a strong laser field,” laid the foundation for his long and distinguished career in laser physics and atomic theory.

Professional Endeavors 💼

Milošević’s career spans over four decades, starting in 1982 when he worked as an Assistant at the Institute of Physics at the University of Sarajevo. From 1984 to 1998, he served as a Researcher at the Research & Development Centre of the Zrak company, focusing on applied physics and technology. His academic journey advanced rapidly, and he became an Assistant Professor in 1991 at the Faculty of Mechanical Engineering, University of Sarajevo. By 1998, he joined the Department of Physics at the Faculty of Science, becoming an Associate Professor. He was promoted to Full Professor in 2004, specializing in Theoretical Physics. His leadership roles included heading the Department of Atomic, Molecular, and Optical Physics (2001-2004) and overseeing the Postgraduate Study of Physics (2004-2012). He also served as Vice-Dean for International Collaboration from 2011-2016, strengthening the university’s global academic relationships.

Contributions and Research Focus 🔬

Milošević’s research primarily focuses on atomic processes in strong laser fields, laser-matter interactions, and attosecond science. He has contributed significantly to the field of nonlinear optics and quantum mechanics. His pioneering work in atomic physics has had a profound impact on understanding laser-induced phenomena and the interaction between light and matter at ultra-short timescales. A notable aspect of his research is his work on attosecond physics, where he investigates the dynamics of electrons and their interaction with intense laser pulses. His collaboration with the Max-Born-Institut für Nichtlineare Optik und Kurzzeit-Spektroskopie in Berlin has been instrumental in advancing the field.

Impact and Influence 🌍

Milošević’s work has garnered international recognition. His collaborations with research institutions such as the Institute for Theoretical Physics in Innsbruck and the University of Nebraska have broadened his impact. His research is frequently cited, and he has become a key figure in the atomic and laser physics community. His publications, totaling 247 papers, have been cited over 10,000 times, reflecting the profound influence of his work. He has received numerous awards, including the Alexander von Humboldt Fellowship and the Georg Forster Research Award from the Alexander von Humboldt Foundation, highlighting his exceptional contributions to the field of theoretical physics.

Academic Citations 📚

According to the Web of Science Core Collection, Milošević’s work has achieved substantial academic recognition, with an h-index of 52 and more than 10,000 citations. This underscores the impact of his research within the global scientific community. His scholarly output spans both highly theoretical and experimental domains, making him one of the leading experts in his field. His continued contributions ensure that his research remains highly influential, especially in the fields of laser-matter interactions and quantum mechanics.

Technical Skills 🛠️

Milošević possesses a wide range of technical skills that have been honed throughout his career. His expertise spans theoretical physics, quantum mechanics, laser physics, and nonlinear optics. He is proficient in the use of advanced computational tools for modeling atomic and molecular processes, and he has contributed to the development of new theoretical frameworks for understanding light-matter interactions at extreme timescales. His technical proficiency is complemented by a deep understanding of experimental techniques, gained through years of collaboration with leading research groups around the world.

Teaching Experience 📖

Milošević has been a dedicated educator at the University of Sarajevo, where he has mentored and trained hundreds of students at both undergraduate and postgraduate levels. He served as the Head of the Doctoral Study at the Department of Physics from 2013 to 2019, shaping the future of theoretical physics in Bosnia and Herzegovina. His teaching philosophy emphasizes rigorous scientific thinking and innovative research. As a result, his students have gone on to become leading physicists and researchers in their own right. His recognition as the Best Professor of the Year at the University of Sarajevo in 2009 reflects the high esteem in which he is held by his peers and students.

Legacy and Future Contributions 🌟

Milošević’s legacy is one of academic excellence, scientific leadership, and international collaboration. He has significantly shaped the development of theoretical physics at the University of Sarajevo and in Bosnia and Herzegovina, leaving an indelible mark on the scientific landscape. His future contributions are likely to continue in the realm of attosecond science and quantum optics, areas where his research has already demonstrated great promise. As he continues his work with international collaborators, his ongoing research will undoubtedly lead to further breakthroughs in the understanding of laser physics and quantum dynamics.

Top Noted Publications

Asymptotic methods applied to integrals occurring in strong-laser-field processes
  • Authors: Milošević, D.B., Jašarević, A.S., Habibović, D., Čerkić, A., Becker, W.
    Journal: Journal of Physics A: Mathematical and Theoretical
    Year: 2024
Above-threshold ionization by a strong circularly polarized laser pulse assisted by a terahertz pulse
  • Authors: Agačević, D., Ibrišimović, N., Škrgić, D., Milošević, D.B.
    Journal: European Physical Journal D
    Year: 2024
Quantum orbits in atomic ionization beyond the dipole approximation
  • Authors: Jašarević, A.S., Habibović, D., Milošević, D.B.
    Journal: Physical Review A
    Year: 2024
High-order above-threshold ionisation of diatomic molecules by few-cycle bicircular and orthogonally polarised two-colour pulses
  • Authors: Habibović, D., Jašarević, A.S., Busuladžić, M., Milošević, D.B.
    Journal: Physical Chemistry Chemical Physics
    Year: 2024
Wigner time delay revisited
  • Authors: Fetić, B., Becker, W., Milošević, D.B.
    Journal: Annals of Physics
    Year: 2024
Modified saddle-point method applied to high-order above-threshold ionization and high-order harmonic generation: Slater-type versus asymptotic ground-state wave function
  • Authors: Jašarević, A.S., Hasović, E., Milošević, D.B.
    Journal: Physical Review A
    Year: 2024
Strong-field processes induced by an ultrashort linearly polarized pulse with two carrier frequencies
  • Authors: Habibović, D., Milošević, D.B.
    Journal: Physical Review A
    Year: 2024

 

 

Weihong Gao | Computational Particle Physics | Women Researcher Award

Mrs. Weihong Gao | Computational Particle Physics | Women Researcher Award

Associate Professor at Harbin Engineering University in China

Dr. Weihong Gao is an esteemed Associate Professor at the School of Materials Science and Chemical Engineering, Harbin Engineering University. With a research career spanning over a decade, Dr. Gao has made significant contributions to the study of shape memory alloys, thermoelectric materials, and material surface interactions. After completing her Ph.D. at Harbin Institute of Technology, she furthered her research through postdoctoral positions and visiting scholar programs at prestigious institutions such as the University of Houston and the National Institute for Materials Science (NIMS) in Japan. Her work is frequently published in leading scientific journals, where she collaborates with experts worldwide. Dr. Gao is also actively involved in mentoring young researchers and contributing to advancing knowledge in materials science.

Profile:

Education:

Dr. Weihong Gao began her academic journey in 2005 by earning a Bachelor’s degree in Materials Physics from the School of Materials Science and Chemical Engineering at Harbin Engineering University, China, in 2009. Continuing her pursuit of knowledge, she completed his Master’s degree in Materials Physics and Chemistry from the same institution in 2012. Dr. Gao achieved her Ph.D. in Materials Physics and Chemistry from the Harbin Institute of Technology in 2015. During her Ph.D., Dr. Gao expanded her horizons by working as a visiting scholar at the University of Houston’s Smart Materials and Structure Laboratory. Her education has been deeply interdisciplinary, with a strong emphasis on advanced materials research, making him a notable figure in materials physics and engineering.

Professional experience:

Dr. Weihong Gao’s professional experience spans multiple esteemed institutions. After completing her Ph.D. in 2015, she worked as a visiting scholar at the Smart Materials and Structure Laboratory at the University of Houston. In 2017, she took on a postdoctoral position in Materials Science and Engineering at the Guangdong University of Technology, further enriching her expertise. From 2017 to 2019, Dr. Gao also worked as a visiting scholar at the Texas Center for Superconductivity at the University of Houston. In 2019, she moved to the National Institute for Materials Science (NIMS) in Japan as a postdoc, where she contributed to groundbreaking research in thermoelectrics. Currently, Dr. Gao serves as an Associate Professor at Harbin Engineering University, where she leads research on shape memory alloys, thermoelectric materials, and material surfaces and interfaces.

Research focus:

Dr. Weihong Gao’s research is centered around advanced materials, specifically shape memory alloys, thermoelectric materials, and material surfaces and interfaces. Her expertise in first-principles calculations enables him to analyze and predict the behavior of materials at the atomic level, contributing to developments in both theoretical and applied materials science. Dr. Gao is particularly interested in improving the mechanical properties and thermal stability of shape memory alloys, which have applications in aerospace, automotive, and medical devices. Additionally, her work on thermoelectric materials focuses on optimizing energy conversion efficiency, a critical area for sustainable energy solutions. Her research combines experimental methods and computational simulations, aiming to enhance the performance of advanced materials in extreme environments.

Award and Honors:

Dr. Weihong Gao has received numerous accolades throughout her research career for her outstanding contributions to materials science. Her work on shape memory alloys and thermoelectric materials has earned recognition in international journals, leading to invitations to serve as a visiting scholar in world-renowned laboratories like the University of Houston and the Texas Center for Superconductivity. She has also been the recipient of several postdoctoral fellowships, including at the prestigious National Institute for Materials Science (NIMS) in Japan. Dr. Gao’s commitment to research excellence has been recognized with multiple awards from institutions in China and beyond, solidifying her reputation as a leading figure in the field of materials physics and chemistry.

Publication Top Notes:

  • Classical tribology and charge-energy evolution theory cooperate to determine nitrided ceramic coating/metal substrate interfacial friction
    Guotan Liu, Zhihao Huang, Weihong Gao*, Bin Sun, Yunxiang Tong, Guosheng Huang*, Yudong Fu*
    Acta Materialia 277 (2023) 120197
  • Data-driven high elastocaloric NiMn-based shape memory alloy optimization with machine learning
    Y. Yang, H. Fu, W. Gao*, W. Su, B. Sun, X. Yi, T. Zheng, X. Meng
    Materials Letters 371 (2023) 136948
  • Recent Advances on Additive Manufactured Shape Memory Alloys
    Y. Yang, W. Gao*, Bin Sun, Y. Fu, X. Meng
    Transactions of Nonferrous Metals Society of China 34 (7) (2023) 2045-2073
  • Understanding the anomalously low thermal properties of Zr₃Ni₃₋ₓCoₓSb₄ thermoelectric material
    X. Wei, Z. Guo, D. Li, C. Li, B. Sun, Y. Fu, W. Gao, Z. Liu
    Materials Today Physics 44 (2023) 101424
  • Mechanical behavior of high entropy ceramic (TiZrHfVNb)C₅ under extreme conditions: A first-principles density functional theory study
    Zesong Wang, Guotan Liu, Weihong Gao*, Yuxi Yang, Ting Zheng, Zhi-Quan Liu, Peifeng Li, Mufu Yan, Yudong Fu*
    Ceramics International 50 (6) (2023) 9820-9831
  • Enhancing the thermal stability and recoverability of ZrCu-based shape memory alloys via interstitial doping
    Yuxi Yang, Mingqi Deng, Weihong Gao*, Bin Sun, Yudong Fu*, Xianglong Meng
    Materials Science and Engineering: A 889 (2024) 145860
  • Cubic phase stabilization and thermoelectric performance optimization in AgBiSe₂–SnTe system
    Zhentao Guo, Yu-Ke Zhu, Ming Liu, Xingyan Dong, Bin Sun, Fengkai Guo, Qian Zhang, Juan Li, Weihong Gao*, Yudong Fu*, Wei Cai, Jiehe Sui, Zihang Liu*
    Materials Today Physics 38 (2023) 101238
  • Atomic-level insights from density functional theory and ab initio molecular dynamics calculations for oxidation mechanism of transition metal doping Nb₄AlC₃(0001) surface
    Guotan Liu, Weihong Gao*, Guosheng Huang, Danni Zhao, Wenlong Su, Bin Sun, Mufu Yan, Yu-dong Fu
    Ceramics International 49 (2023) 40061-40072
  • Modification mechanism of Ti-6Al-4V alloy with pre-coated Ti-Cu-Al multilayer film treated by ion nitriding: Experiments and first-principles calculations
    Guotan Liu, Enhong Wang, Weihong Gao*, Zhihao Huang, Bin Wei, Yuxi Yang, Mufu Yan, Yu-dong Fu*
    Surfaces and Interfaces 40 (2023) 103004
  • Study on the microscopic mechanism of age-strengthened high damage tolerance Al–Cu–Mg alloys
    Guotan Liu, Weihong Gao*, Guosheng Huang*, Keqiang Sun, Bin Sun, Jinlai Fu, Ting Li, Fuguan Cong, Yudong Fu*
    Vacuum 216 (2023) 112442

Conclusion:

Given Weihong Gao’s substantial publication record, international collaborations, and innovative contributions to the fields of shape memory alloys and thermoelectric materials, She is an outstanding candidate for the Best Researcher Award. Her work not only advances theoretical understanding but also offers real-world applications that could significantly impact technology and industry.