Amirali Farmani | High energy physics | Best Researcher Award

Mr. Amirali Farmani | High energy physics | Best Researcher Award

PHD at Sahand University of Technology, Iran

Amirali Farmani is a Ph.D. candidate in Material Science at Sahand University of Technology, focusing on enhancing hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes. He holds a Bachelor of Engineering in Material Engineering with a specialization in Metallurgy from Bonab University and a Master of Science in Material Science from Sahand University. His research includes innovative approaches to corrosion protection, nanocrystalline nickel films, and electrochemical water splitting. Amirali has contributed significantly to his field with several publications in esteemed journals and has been involved in consultancy projects, including designing novel corrosion protection systems. High energy physics

Professional Profiles

Academic and Professional Background

From September 2013 to August 2017, Amirali Farmani pursued a Bachelor of Engineering in Material Engineering with a specialization in Metallurgy at Bonab University, East Azerbaijan. Continuing his academic journey, from September 2017 to June 2020, he completed a Master of Science in Material Science focusing on Corrosion and Material Protection at Sahand University of Technology, Tabriz, East Azerbaijan. Currently, he is a Ph.D. candidate in Material Science, also at Sahand University of Technology, where his research has focused on enhancing hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes through innovative approaches, as evidenced by several publications in esteemed journals.  High energy physics

Areas of Research

Functional Nanomaterials Energy Materials Corrosion and Surface Science. High energy physics

Research Focus

The researcher in question appears to focus on the fields of material science and electrochemistry, with a specific interest in the synthesis and characterization of electrode materials. Their work includes studying the enhancement of hydrogen and oxygen evolution reactions on nickel electrodes, exploring the effects of mesoporosity, magnetohydrodynamics, and high gradient magnetic forces. They also investigate the corrosion behavior and ion release of chromium-cobalt alloys, particularly under the influence of chemical passivation. Additionally, they have delved into the production of nanocrystalline nickel films using ultrasonic-assisted pulse electrodeposition, examining the competition between mass transport and nucleation in determining corrosion resistance. High energy physics

Publications

  1. Ultrasonic-assisted pulse electrodeposition process for producing nanocrystalline nickel films and their corrosion behavior: Competition between mass transport and nucleation, Publication date: 2024.
  2. Effect of chemical passivation on corrosion behavior and ion release of a commercial chromium-cobalt alloy, Publication date: 2020.
  3. Boosting hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes via simultaneous mesoporosity, magnetohydrodynamics and high gradient magnetic forcePublication date: 2020.
.

Assaad Elouafi | Materials Physics | Best Researcher Award

Dr. Assaad Elouafi | Materials Physics | Best Researcher Award

PHD at Hassan II University of Casablanca, Morocco

Assaad El Ouafi specializes in the elaboration and characterization of nanomaterials, including perovskites, iron oxides, pyrochlores, ferrites, hexaferrites, and phosphate-based oxides. His expertise extends to various synthesis methods such as sol-gel, ceramic route, co-precipitation, inverse sol-gel, and hydrothermal techniques. He is proficient in using a range of instruments including tensile, flexure, and compression tests, hardness tests, UV-Visible spectrometry, Mössbauer spectrometry, X-ray diffraction, SQUID, and vibrating-sample magnetometer (VSM).

Professional Profiles

Education

Faculty of Sciences Ain Chock, Hassan II University of Casablanca-Morocco Ph.D. in Materials Physics and Energetics (2016 – 2021) Master’s Degree in Renewable Energy and Energy Systems (2014 – 2016) Bachelor’s Degree in Physics Materials (2011 – 2014) Moulay Idriss 1st High School-Anfa, Casablanca Morocco High School Diploma in Life and Earth Sciences (2010 – 2011)

Experience

Anfous Center for Coaching and Personal Development, Casablanca-Morocco ENNEAGRAM WORKSHOP (Relational intelligence) (March 2023) Higher School of Technology Hassan II University of Casablanca, Morocco Substitute Teacher (2018-2023) Courses taught: Physics, mathematics, thermodynamics, heat treatment. Practical work: metrology, mechanical maintenance, fluid mechanics, heat exchangers, electricity, thermodynamics, materials, and heat treatment. Mentored Graduate and PhD Students (2021-2023) Provided guidance for research projects.

Skills

Nanomaterials synthesis and characterization Various methods: sol-gel, ceramic route, co-precipitation, inverse sol-gel, hydrothermal Proficient with instruments: tensile, flexure and compression tests, hardness tests, UV-Visible spectrometry, Mössbauer spectrometry, X-ray diffraction, SQUID, VSM

Research Focus

Assaad El Ouafi’s research predominantly focuses on the synthesis and characterization of nanomaterials, especially their structural, magnetic, and optical properties. His studies include detailed morphological and structural analyses of materials such as treated sisal fibers, hematite, γ-Fe₂O₃ nanoparticles, amorphous alloys, and various perovskites and pyrochlores. Key areas of interest are the magnetocaloric effects for magnetic refrigeration applications and the enhancement of materials’ optical properties for optoelectronic applications. His work employs advanced techniques like Mössbauer spectrometry, X-ray diffraction, and various forms of magnetometry.

Publications

  1. Electric field mapping by Pockels effect and I (V) characteristic of CdTe nuclear detectors by different Pt contact deposition, Publication date: 2024.
  2. Magneto-transport and optical properties of La0.7K0.3Mn(1−x)GaxO3 (0 ≤ x ≤ 0.25) ceramicsPublication date: 2024.
  3. Optical properties investigation of Sr2CaFe2WO9 triple perovskite for optoelectronic applications, Publication date: 2023.
  4. Structural, Magnetic, and Magnetocaloric Studies of the Potassium Diphosphate KCrP2O7, Publication date: 2023.
  5. Excellent magnetocaloric effect at cryogenic temperature in amorphous (Fe35RE65)(RE= Er, Dy and Gd) alloys, Publication date: 2023.
  6. Near room temperature magnetocaloric effect of Cr1− xRuxO2 (x= 0.000, 0.125, and 0.250) for magnetic refrigeration, Publication date: 2023.
  7. Effect of cerium doping in tuning the optical and photoluminescence properties of TiO2 nanoparticles, Publication date: 2023.
  8. Structural, magnetic and magnetocaloric effect of pyrochlore iridate Er2Ir2O7, Publication date: 2023.
  9. Large magnetocaloric effect and magnetic properties of EuRhO3, Publication date: 2023.
  10. Effect of sisal fibre treatment on the hydration and thermophysical properties of a cement biocomposite, Publication date: 2023.
.