Xiaolong Zhao | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Xiaolong Zhao | Experimental methods | Best Researcher Award

Xi’an jiaotong university | China

Dr. Xiaolong Zhao is an Associate Professor at Xi’an Jiaotong University in the School of Microelectronics, Faculty of Electronic and Information Engineering. He is a highly regarded researcher in the field of semiconductor radiation detectors, microwave components, and FDTD simulation. With a solid educational background from Xi’an Jiaotong University, Dr. Zhao has made notable strides in the development of advanced detector systems and simulation models. His multifaceted research continues to shape the future of semiconductor technologies.

👨‍🎓Profile

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Zhao’s journey began at Xi’an Jiaotong University, where he earned his Bachelor’s degree in Microelectronics in 2012, followed by a PhD in Electronic Science and Technology in 2017. During his academic years, he developed a keen interest in the field of semiconductor devices, leading to his work on radiation detection systems. His early research laid a strong foundation for his subsequent postdoctoral work, which further solidified his expertise in advanced semiconductor technologies and microwave engineering.

Professional Endeavors 🛠️

Dr. Zhao’s professional career is characterized by his contributions to both academic research and industry. After completing his PhD, he undertook a Postdoctoral Fellowship at Xi’an Jiaotong University from 2018 to 2024, enhancing his expertise in radiation detectors and microwave simulations. Additionally, his industrial experience as a Hardware Engineer at Huawei Technologies between 2017 and 2018 provided him with valuable insights into practical applications of his research in the tech industry.

Contributions and Research Focus 🔬

Dr. Zhao’s research focuses primarily on semiconductor radiation detectors and the nonlinear effects in microwave components. His work on FDTD simulation for the analysis of microwave circuits and radiation sensors has significantly advanced the understanding and design of next-generation detection systems. His research on ZnO-based X-ray detectors, ultraviolet phototransistors, and bulk-acoustic-wave resonators demonstrates his profound contribution to innovative materials and sensing technologies.

Academic Cites 📚

Dr. Zhao’s work is well-recognized in the scientific community. With 18 peer-reviewed publications (including multiple first-author and corresponding author papers), he has consistently contributed high-impact research that has garnered substantial academic attention. For instance, his paper on “Physical Sensors Based on Lamb Wave Resonators” published in Micromachines and his research on ZnO-based X-ray detectors published in Nuclear Instruments and Methods are widely cited and respected in the fields of semiconductor science and detection technology.

Research Skills 🧠

Dr. Zhao possesses a range of specialized research skills including:

  • Semiconductor Device Design
  • FDTD Simulation Techniques
  • Microwave Engineering
  • Material Science (ZnO, 4H-SiC)
  • Radiation Detection Technologies

These skills have allowed him to make innovative contributions to both theoretical studies and applied research in semiconductor devices and sensor systems. His expertise in nonlinear effects and advanced simulations further sets him apart as a leader in his field.

Teaching Experience 🎓

As an Associate Professor, Dr. Zhao is dedicated to the development of the next generation of microelectronics engineers. His teaching responsibilities at Xi’an Jiaotong University include courses on semiconductor physics, microwave engineering, and radiation detection technologies. He combines his industry experience and research expertise to offer students a rich and practical understanding of electronic engineering and materials science.

Awards and Honors 🏆

Dr. Zhao’s exceptional work has earned him several prestigious research grants, including:

  • National Science Foundation of China (2023-2026)
  • Research Project of Shanghai Aerospace Electronics Equipment Institute (2023)
  • Research Project of Honor Device Co. Ltd. (2021)

Additionally, his innovative contributions to semiconductor and radiation detection technologies have been recognized by his peers in the research community, making him a notable figure in microwave engineering and sensor development.

Legacy and Future Contributions 🌱

Dr. Zhao’s legacy is already well-established through his high-impact research and teaching. As a forward-thinking researcher, his work promises to shape the future of radiation detection systems, microwave technologies, and semiconductor devices for years to come. Looking ahead, Dr. Zhao plans to continue his exploration of new materials and sensor technologies, and he is dedicated to further expanding the applications of his work in sectors such as aerospace, medical diagnostics, and environmental monitoring.

Publications Top Notes

Real-Time Ultraviolet Flame Detection System Based on 4H-SiC Phototransistor

  • Authors: Danyang Huang, Xiaolong Zhao, Quan Li, Zhaozhao Liang, Shuwen Guo, Yongning He
    Journal: IEEE Transactions on Electron Devices
    Year: 2024

Readout circuit for a ZnO bulk-acoustic-wave X-ray dose rate detector

  • Authors: Zixia Yu, Junyan Bi, Danyang Huang, Xiaolong Zhao, Yongning He
    Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    Year: 2024-10

Physical Sensors Based on Lamb Wave Resonators

  • Authors: Zixia Yu, Yongqing Yue, Zhaozhao Liang, Xiaolong Zhao, Fangpei Li, Wenbo Peng, Quanzhe Zhu, Yongning He
    Journal: Micromachines
    Year: 2024-10-09

Full-Wave Simulation of Contact-Nonlinearity-Induced Passive Intermodulation Using a Nonlinear Interface Boundary Model

  • Authors: Xiaolong Zhao, Yongning He, Anxue Zhang
    Journal: IEEE Microwave and Wireless Technology Letters
    Year: 2024-06

Linearity–Nonlinearity-Separation FDTD Method for Nonlinearity Analysis of Passive Microstrip Circuits

  • Authors: Xiaolong Zhao, Yongning He, Anxue Zhang
    Journal: IEEE Microwave and Wireless Technology Letters
    Year: 2023

 

Jiawei Wang | Experimental methods | Best Researcher Award

Mr. Jiawei Wang | Experimental methods | Best Researcher Award

College of Information Engineering, China Jiliang University | China

Dr. Jiawei Wang is an accomplished academic in Condensed Matter Physics, with a Ph.D. from Tsinghua University and extensive experience in research, teaching, and leadership roles in China and abroad. His work focuses on magnetic materials, multiferroic films, and quantum physics, with notable achievements in scholarship awards, conference presentations, and research grants. His career exemplifies dedication to advancing knowledge and nurturing future scientists.

👨‍🎓 Profile

Scopus

Orcid

🎓Early Academic Pursuits

Dr. Wang’s academic journey began at Lanzhou University, where he received his B.S. in Physics. His outstanding academic performance earned him multiple university scholarships, and he was recognized as an Outstanding Graduate in 2007. He continued his education at Tsinghua University, one of the premier institutions for physics in China, where he earned his Ph.D. in Condensed Matter Physics. His dissertation, conducted under the guidance of top experts in the field, focused on the magnetic properties of low-dimensional materials, setting the stage for his future research.

💼Professional Endeavors

Dr. Wang’s professional career has spanned various prestigious institutions. He has held faculty positions at Zhejiang University of Technology and currently serves as a faculty member at China Jiliang University. His roles have ranged from instructing undergraduates in foundational physics courses, particularly electromagnetism, to supervising graduate students and research projects. Dr. Wang has also collaborated internationally, notably as a Visiting Scholar at Northeastern University, where he conducted pioneering research on new magnetic materials. He has also been an active research manager, overseeing programs funded by national science foundations.

🔬Contributions and Research Focus

Dr. Wang’s research contributions have focused on magnetic materials, specifically developing multiferroic hexagonal RMnO3 films with unique magnetic properties, including high magnetostriction and perpendicular magnetic anisotropy. His work in this area aims to develop materials for advanced electronics, data storage, and sensing technologies. He has been a principal investigator for several funded projects such as those supported by the National Natural Science Foundation of China and the Zhejiang Natural Science Foundation. Through his research, Dr. Wang is advancing the field of condensed matter physics, exploring novel materials with real-world applications in energy and technology.

🧠Research Skills

Dr. Wang’s research skills are exemplified through his leadership in magnetic materials research and his ability to manage complex scientific programs. His expertise includes material fabrication, characterization techniques, and the development of multiferroic materials. His focus on developing high-performance materials, such as those with high magnetostriction coefficients and perpendicular magnetic anisotropy, showcases his innovative approach to solving practical problems in material science. Dr. Wang has a deep understanding of theoretical and experimental physics, which he combines to push the boundaries of his field.

👨‍🏫Teaching Experience

Dr. Wang has been a dedicated educator, teaching a wide array of courses in physics, including electromagnetic fields, mathematical physics methods, and laboratory physics. He has taught students at both the undergraduate and graduate levels, guiding them through fundamental principles and advanced concepts. Dr. Wang also plays a significant role in mentoring graduate students and young researchers, preparing them for careers in both academia and industry. His experience as a teaching assistant at Tsinghua University early in his career laid the foundation for his effective teaching methodology and commitment to student development.

🔮Legacy and Future Contributions

Dr. Wang’s legacy in the field of condensed matter physics is still unfolding, but his research on multiferroic materials and magnetic materials is poised to have a long-lasting impact. His ability to secure national funding and lead multi-year projects speaks to his leadership skills and his potential to shape future innovations in material science. Going forward, Dr. Wang will likely continue making groundbreaking contributions to the magnetism and material science fields. Additionally, as he expands his publication record and engages more deeply with interdisciplinary research, his influence is set to grow, inspiring future generations of physicists and material scientists.

Publications Top Notes