Tupan Das | Experimental methods | Best Researcher Award

Mr. Tupan Das | Experimental methods | Best Researcher Award

Mr. Tupan Das is a Research Scholar and Senior Research Fellow (CSIR SRF) currently pursuing his Ph.D. in Physics at the Indian Institute of Technology (IIT) Patna. His research centers around flexible, multifunctional nanogenerator devices, with applications in self-powered sensors and sustainable energy systems. With a solid academic foundation, a trail of high-impact publications, and a growing patent portfolio, he is quickly establishing himself as a promising early-career scientist in nanotechnology and materials science.

👨‍🎓Profile

Google scholar

Scopus

📚 Early Academic Pursuits

Mr. Das laid his academic foundation at Jawahar Navodaya Vidyalayas, where he consistently performed at the top percentile. He completed his B.Sc. in Physics from Govt. Degree College Dharmanagar under Tripura University, followed by a Master’s in Physics from NIT Agartala with distinction (79%). His consistent academic success led him to IIT Patna, where he is pursuing a Ph.D. with a stellar 88.6% score, focusing on flexible polymer nanocomposites for energy harvesting.

🧪 Professional Endeavors

Throughout his doctoral journey, Mr. Das has been a recipient of the prestigious CSIR Junior and Senior Research Fellowships, awarded by the Council of Scientific & Industrial Research (CSIR), Government of India. His research spans piezoelectric, triboelectric, and hybrid nanogenerators, ferroelectric materials, and energy storage devices, with a hands-on approach in both experimental fabrication and device testing.

🔬 Research Focus and Contributions

His Ph.D. thesis titled “Flexible and Multifunctional Polymer Nanocomposite-based Nanogenerator Devices for the Self-powered Sensor Applications” reflects his cutting-edge work in energy harvesting and sensing technologies. With over 15 high-impact peer-reviewed publications, including in Nano Energy (IF: 16.8) and Chemical Engineering Journal (IF: 13.4), he has pioneered multifunctional nanogenerators that power devices without external batteries  a leap toward self-sustainable electronics. His interdisciplinary approach, combining magnetic, dielectric, and piezoelectric properties, has also led to research on self-charging supercapacitors, memristors, and optoelectronic devices, along with a submitted patent on radiation therapy films.

🌍 Impact and Influence

Mr. Das’s work has made a visible mark on the field of applied physics and materials engineering, particularly in the domains of wearable electronics, biomedical sensors, and sustainable energy. His research not only demonstrates academic rigor but also emphasizes real-world applications  evident through presentations at international conferences like ICONN, MRSI, and AC2MP, where he has received accolades including Best Oral Presentation and 1st Position in Research Communication.

📈 Academic Citations and Visibility

With publications in high-impact journals and ongoing collaborations with senior researchers, Mr. Das’s work is gaining increasing attention in the academic community. Journals such as Nano Energy, Applied Physics Letters, and Chemical Engineering Journal ensure global visibility and citation potential, cementing his status as a rising contributor in nanotechnology research.

🛠️ Research and Technical Skills

Mr. Tupan Das possesses comprehensive expertise in advanced experimental techniques, making him a highly skilled experimentalist in the field of materials science and applied physics. His technical proficiency includes X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) for structural analysis. He is adept in fabrication techniques like Spin Coating, Electrospinning, and Hydrothermal Synthesis. Additionally, he has hands-on experience with Impedance Analysis, Ferroelectric Loop Tracing, Cyclic Voltammetry, and Planetary Ball Milling. His core strength lies in energy storage and harvesting device fabrication, especially in self-charging supercapacitors and nanogenerators, showcasing his broad technical command.

👨‍🏫 Teaching Experience

As a teaching assistant, Mr. Das has contributed to B.Tech. 1st Year Physics Labs during 2022–2023 and 2023–2024 at IIT Patna. His ability to communicate complex concepts clearly, coupled with a passion for education, makes him an effective mentor and guide to undergraduate students.

🏅 Awards and Honors

Mr. Tupan Das has received multiple prestigious accolades that underscore his scientific excellence, communication skills, and research innovation. He qualified the CSIR-UGC NET JRF with an impressive AIR 323, along with clearing GATE (2021) and IIT JAM (2018) all national-level competitive exams. He earned the Best Oral Presentation Award at AC2MP-2024, IIT Patna, and secured 1st Position in the highly competitive “My Research in 3 Minutes” contest at RSD 2024. Demonstrating innovation, he has also filed a patent on magnetic nanofiber-based radiation therapy films, further solidifying his profile as a dynamic and impactful researcher.

🌐 International Exposure

Mr. Das is selected for the NSTC-IIPP Internship Programme at Ming-Chi University of Technology, Taipei, Taiwan (2024-2025). Here, he will explore hybrid piezo-triboelectric nanogenerators for gas sensing and water harvesting  a testament to his global research impact and collaboration.

🧭 Legacy and Future Contributions

Mr. Tupan Das is positioned to become a leading researcher in next-generation energy solutions. His integrated approach to multifunctional nanomaterials aligns with future industrial and healthcare demands, especially in the IoT, wearables, and sustainable technologies domains. With plans to continue in academic research and innovation, he is expected to contribute significantly to India’s scientific and technological self-reliance.

Top Noted Publications

Flexible Piezoelectric Nanogenerator as a Self-charging Piezo-supercapacitor for Energy Harvesting and Storage Application

  • Authors: T. Das, S. Tripathy, A. Kumar, and M. Kar
    Journal: Nano Energy
    Year: 2025

The MnAl-alloy nanoparticles incorporated PVDF-based piezoelectric nanogenerator as a self-powered real-time pedometer sensor

  • Authors: T. Das, S. N. Rout, A. Dev, and M. Kar
    Journal: Applied Physics Letters
    Year: 2024

Double perovskite-based wearable ternary nanocomposite piezoelectric nanogenerator for self-charging, human health monitoring and temperature sensor

  • Authors: T. Das, M. K. Yadav, A. Dev, and M. Kar
    Journal: Chemical Engineering Journal
    Year: 2024

Multi-functional piezoelectric nanogenerator based on relaxor ferroelectric materials (BSTO) and conductive fillers (MWCNTs) for self-powered memristor and optoelectronic devices

  • Authors: T. Das, P. Biswas, A. Dev, J. Mallick, and M. Kar
    Journal: Chemical Engineering Journal
    Year: 2024

Tuning of magnetic properties of Al-doped cobalt ferrite nanofiber prepared by electrospinning technique

  • Authors: T. Das, S. Noor, Kumari, J. Mallick, A. Shukla, S. Datta, M.K. Manglam, and M. Kar
    Journal: Physica Scripta
    Year: 2023

 

Christen Tharwat | Experimental methods | Best Researcher Award

Dr. Christen Tharwat | Experimental methods | Best Researcher Award

Researcher at National Research Centre | Egypt

Christen Tharwat is a Postdoctoral Researcher specializing in plasmonic gas sensors, graphene-based sensors, and nanotechnology for biomedical applications. With a strong academic foundation from Cairo University, he has made notable contributions in nanoparticle synthesis and environmental applications. He is recognized for his work on magnetic nanoparticles and their uses in areas such as wastewater treatment and biomedical applications. Tharwat is also actively involved in academic writing, proofreading, and manuscript submissions, further enhancing his impact in the scientific community.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Christen Tharwat’s academic journey began at Cairo University, where he obtained a Bachelor’s degree in Physics & Chemistry in 2010, followed by a Master of Science in Physics in 2014. His master’s research was centered on laser treatment of Ti-Ni alloys coated with hydroxyapatite/silver nanoparticles for biomedical applications. Tharwat then pursued a PhD in Physics at the National Institute of Laser Enhanced Sciences, Cairo University, focusing on the construction of optical sensors for environmental applications. His early academic work laid the groundwork for his extensive research in nanotechnology.

Professional Endeavors 💼

Tharwat’s professional career spans both research and teaching. As a Postdoctoral Fellow, he is engaged in cutting-edge work on plasmic gas sensors and graphene-based sensors, contributing significantly to the sensor technology field. His research at the National Research Centre, Egypt, and the American University in Cairo has equipped him with diverse expertise in nanomaterial synthesis and their industrial applications. Furthermore, his freelance academic writing and proofreading have helped him hone his skills in articulating complex scientific ideas for academic audiences.

Contributions and Research Focus 🔬

Tharwat’s research has been pivotal in advancing nanotechnology across various domains. His work on magnetic nanoparticles and their size dependence for biomedical applications has practical implications for drug delivery and bioimaging. Additionally, his work on nanoparticles for wastewater treatment demonstrates his commitment to environmental sustainability. His laser treatment techniques for biomedical alloys further underscore his contributions to improving healthcare technologies. Tharwat’s focus on graphene and plasmic gas sensors indicates his strong involvement in future-oriented research that addresses environmental and industrial challenges.

Impact and Influence 🌍

Tharwat has had a substantial impact on both the academic and industrial sectors. His work on magnetic nano-crystals for bioimaging has expanded the potential for more effective medical diagnostics, while his contributions to wastewater treatment provide practical solutions to environmental pollution. The development of optical sensors for environmental monitoring has contributed to better understanding and control of environmental hazards. Furthermore, his international collaborations with institutions like the Université de Picardie Jules Verne, France, have enhanced the global applicability of his research.

Academic Citations and Research Skills 📚

Tharwat has authored numerous peer-reviewed journal papers and presented his findings at international conferences. His publications include studies on magnetic nanoparticles, nanoflowers for dye removal, and silicon-based nanostructures. His research in nanomaterials and nanostructures has been cited across multiple disciplines, highlighting the versatility and impact of his work. Additionally, his proficiency in synthesizing nanoparticles, sensor fabrication, and surface modifications speaks to his technical expertise and innovation in experimental methods.

Teaching Experience 🧑‍🏫

Tharwat’s academic career also includes a strong teaching role, where he has trained and mentored undergraduate students in Solid State Physics at institutions like the American University in Cairo. His work in academic mentoring and research assistance has influenced the next generation of scientists, guiding students through complex lab equipment and research techniques. Tharwat’s ability to explain cutting-edge concepts in nanotechnology and sensor development makes him a valuable educator.

Awards and Honors 🏅

Tharwat has received recognition for his work in both academic research and innovation. He is the co-holder of international patents in nanotechnology, including one for nanoalloys for wastewater treatment and another for coated magnetic nano-crystals for bioimaging. His contributions to the field of nanomaterials have led to multiple conference papers and journal publications, earning him a prominent place among young researchers in nanotechnology and material science.

Legacy and Future Contributions 🔮

Christen Tharwat’s research legacy will likely be marked by his advancements in sensor technologies and his contributions to environmental sustainability and biomedical applications. As his work in graphene-based sensors and nanomaterial synthesis continues to evolve, he is well-positioned to shape future research in these critical areas. Moving forward, his ongoing postdoctoral work will likely focus on next-generation sensor devices and environmental monitoring systems, ensuring that his research continues to have a lasting impact on both scientific and industrial landscapes. His vision for the future includes collaborative research that bridges nanotechnology with environmental and healthcare solutions.

Publications Top Notes

Photo-degradation of water and food pathogens using cheap handheld laser

  • Authors: S Mohamed, C Tharwat, A Khalifa, Y Elbagoury, H Refaat, SF Ahmed, …
    Journal: High-Power Laser Materials Processing: Applications, Diagnostics, and …
    Year: 2025

Single step MACE for SiNWs fabrication with (Au & Ag) metals

  • Authors: A Khalifa, AAM Ahmed, C Tharwat, M El Koddosy, MA Swillam
    Journal: Nanoscale and Quantum Materials: From Synthesis and Laser Processing to …
    Year: 2025

Effect of ZnO/EAF slag doping on removal of methyl red dye (MR) from industrial waste water

  • Authors: C Tharwat, D. A. Wissa, Nadia F. Youssef
    Journal: Scientific Reports
    Year: 2024

Fabrication of crystalline silicon nanowires coated with graphene from graphene oxide on amorphous silicon substrate using excimer laser

  • Authors: MAS C Aziz, MA Othman, A Amer, ARM Ghanim
    Journal: Heliyon
    Year: 2024

CW laser beam-based reduction of graphene oxide films for gas sensing applications

  • Authors: C Tharwat, Y Badr, SM Ahmed, IK Bishay, MA Swillam
    Journal: Optical and Quantum Electronics
    Year: 2024