Bin Lu | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Bin Lu | Experimental methods | Best Researcher Award

Associate Professor at Ningbo University | China

Dr. Bin Lu is a distinguished Associate Professor at the School of Materials Science and Chemical Engineering, Ningbo University, China. With a research trajectory that spans over a decade, Dr. Lu has emerged as a leading expert in optical ceramics and luminescent materials. His work is recognized not only nationally but also internationally, thanks to his extensive publication record, innovation in materials design, and pioneering research efforts in the field of functional ceramics.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Lu began his academic journey with a Master’s degree from Northeastern University, China, where he built a strong foundation in materials science. He further honed his expertise by pursuing a Ph.D. in Materials Science and Engineering at the prestigious University of Tsukuba, Japan, graduating in 2015. This international academic exposure enabled him to bridge research methodologies across China and Japan, setting the stage for a high-impact career.

🧑‍🔬 Professional Endeavors

In 2016, Dr. Lu joined Ningbo University as a backbone researcher, reflecting the university’s confidence in his potential to contribute at a high level. Currently serving as an Associate Professor, he is a core member of the Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province. Over the years, he has led or participated in 10 significant research projects, showcasing strong leadership in both academic and applied research initiatives.

🔬 Contributions and Research Focus

Dr. Lu’s research is centered on Optical Functional Ceramics, including transparent ceramics, semiconductor ceramics, ceramic scintillators, and magneto-optical ceramics. His secondary but equally impactful focus lies in luminescent materials and gas-sensing ceramics. His published work reflects deep engagement in ceramic microstructure manipulation, sintering behavior optimization, and photoluminescence tuning—addressing challenges in material transparency, magneto-optical performance, and color conversion.

🌍 Impact and Influence

With more than 50 peer-reviewed articles published in high-impact international journals such as Acta Materialia, Journal of the American Ceramic Society, Journal of Materials Chemistry C, and Optics Express, Dr. Lu’s work is widely referenced and respected in the global materials science community. His research contributes to key advancements in photonics, sensors, and energy-efficient devices, directly influencing both academic research and industrial applications.

📊 Academic Citations

While specific citation metrics are not included here, Dr. Lu’s consistent presence in top-tier journals and frequent role as first or corresponding author indicates strong citation potential and academic influence. His contributions have helped shape ongoing research trends in transparent ceramics and rare-earth luminescent materials.

🧪 Research Skills

Dr. Lu exhibits exceptional skills in materials synthesis, vacuum sintering, optical spectroscopy, crystal structure analysis, and dopant optimization. He is also proficient in up/down-conversion photoluminescence studies and magneto-optical property characterization, allowing for in-depth exploration of advanced ceramic functionalities. His research approach is a balance of experimental precision and innovative design, backed by a clear understanding of materials chemistry and solid-state physics.

👨‍🏫 Teaching Experience

As an Associate Professor, Dr. Lu is actively involved in undergraduate and postgraduate teaching, mentoring students in both theoretical and experimental aspects of materials science. While specific teaching accolades are not listed, his role in student supervision, project guidance, and laboratory training underscores a solid teaching foundation.

🏆 Awards and Honors

One of Dr. Lu’s notable recognitions is the “Zhejiang Provincial Qianjiang Talent” award (2017), which is a prestigious acknowledgment granted to emerging academic leaders with high potential in scientific research and innovation. This award confirms Dr. Lu’s status as a recognized talent at the provincial level and highlights his contributions to science and technology development in China.

🔮 Legacy and Future Contributions

Dr. Bin Lu’s legacy is being shaped through his multi-faceted contributions to optical ceramics, his innovation-driven patents (11 granted), and his leadership in multi-disciplinary research projects. Moving forward, he is well-positioned to expand into interdisciplinary applications such as biomedical imaging, quantum materials, and environmental monitoring, building upon his core expertise. His future work will likely enhance next-generation optoelectronic devices, smart sensors, and sustainable ceramic technologies.

Top Noted Publications

First highly transparent Gd₂Sn₂O₇ pyrochlore ceramics with high refractive index: Al₂O₃ additive roles on structural features, sintering behaviors, and optical performances

  • Authors: Ruijie Pei, Bin Lu*, Youren Dong, Bo You
    Journal: Acta Materialia
    Year: 2024

Optical grade (Gd₀.₉₅₋ₓLuₓEu₀.₀₅)₃Al₅O₁₂ ceramics with near-zero optical loss: Effects of Lu³⁺ doping on structural feature, microstructure evolution, and far-red luminescence

  • Authors: Zhigang Sun, Ji-Guang Li, Huiyu Qian, Yoshio Sakka, Tohru S. Suzuki, Bin Lu*
    Journal: Journal of Advanced Ceramics
    Year: 2024

Insights into the roles of the MgO additive in crystal structures, sintering behaviors, and optical properties of transparent In₂O₃ semiconductor ceramics

  • Authors: Bo You, Bin Lu*, Dazhen Wu, Ruijie Pei
    Journal: Journal of Materials Chemistry C
    Year: 2024

Crystal structural effects on up/down-conversion luminescence properties of GdInO₃:Tm,Yb perovskite phosphors for effective dual-mode anti-counterfeit applications

  • Authors: Xiao-min Wang, Kai Feng, Liang Shan, Jie Zou, Bin Lu*
    Journal: Optics Express
    Year: 2024

Production and characterization of highly transparent novel magneto-optical Ho₂Zr₂O₇ ceramics with anion-deficient fluorite structures

  • Authors: Liangbin Hu, Bin Lu*, Bowen Xue, Shixun Dai
    Journal: Journal of Materials Science & Technology
    Year: 2023

 

Prof. Wang Fengyun | Experimental methods | Best Researcher Award

Prof. Wang Fengyun | Experimental methods | Best Researcher Award

Professor at Qingdao university | China

Fengyun Wang is an accomplished scientist whose interdisciplinary research bridges chemistry, physics, materials science, and various engineering disciplines. With a focus on cutting-edge materials such as low-dimensional metal oxide semiconductors, perovskites, and Mxenes, Wang has contributed significantly to the development of next-generation bioelectronics, photonics, and energy storage devices.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Wang’s academic journey began with a strong foundation in the fundamental sciences. Through early exposure to materials synthesis and characterization, Wang developed a passion for understanding the physical and chemical behavior of novel semiconductor materials. This passion laid the groundwork for a research path centered on innovative material solutions for high-tech applications.

🧑‍🔬 Professional Endeavors

Wang has presided over eight national and provincial research projects, playing a pivotal role in exploring topics ranging from quantum dot/metal oxide heterojunctions for photovoltaic transistors to the controllable preparation of III–V semiconductor nanowires. These projects are backed by prestigious institutions like the National Natural Science Foundation of China and the Shandong Province Key R&D Program.

🔬 Contributions and Research Focus

Dr. Wang’s research contributions lie primarily in the synthesis and application of low-dimensional semiconductor materials. By integrating disciplines, Wang has developed metal oxide nanofibers, indium phosphide nanowires, and multifaceted nanostructures for use in field-effect transistors, UV detectors, and flexible solar cells. These innovations address critical challenges in energy harvesting, optoelectronics, and next-gen computing.

🌍 Impact and Influence

Fengyun Wang’s work has earned widespread recognition. With over 80 SCI-indexed publications in esteemed journals such as Advanced Materials, Advanced Functional Materials, IEEE Electron Device Letters, and Nano Research, Wang’s findings have been cited more than 2400 times, showcasing global academic impact. The research has pushed boundaries in device efficiency and material integration across multiple application areas.

📚 Academic Publications & Citations

  • 80+ SCI papers published internationally

  • Journals include Adv. Mater., Adv. Funct. Mater., IEEE Electron Device Lett., and Nano Res.

  • Total citations: 2400+, underscoring the relevance and reliability of the research

  • Invited author of the monograph Semiconducting Metal Oxide Thin-Film Transistors, published by the British Physical Society

🧪 Research Skills

Dr. Fengyun Wang possesses advanced expertise in the synthesis of low-dimensional materials, including 1D and 2D structures, and the fabrication of nanofibers and nanowires. His skills extend to quantum dot integration, heterojunction construction, and the design and optimization of thin-film transistors. Additionally, he excels in engineering optoelectronic and photovoltaic devices. These capabilities enable him to lead and execute highly complex, interdisciplinary projects at the forefront of materials science and electronic device innovation.

👨‍🏫 Teaching Experience

Though specifics on teaching are not provided, Wang’s leadership in multiple national-level projects and publication of an academic monograph suggests active involvement in mentoring graduate students, postdocs, and likely contributing to advanced university-level courses in semiconductor physics, nanomaterials, and optoelectronics.

🏅 Awards and Honors

Dr. Fengyun Wang holds 5 authorized national invention patents, showcasing his originality and the practical impact of his innovations. He has been selected for key provincial talent programs, including the prestigious Shandong Excellent Youth, recognizing his potential and contributions to scientific advancement. Additionally, he is a recognized author by international scientific societies, reflecting his scholarly excellence and influence in the global research community.

🌟 Legacy and Future Contributions

Looking ahead, Dr. Fengyun Wang is poised to continue leading transformative research in material innovation, particularly in the realm of flexible and high-efficiency electronics. With a growing body of influential work, patented technologies, and academic outreach, Wang’s future contributions will likely shape the next generation of green energy solutions and bio-integrated electronics.

Publications Top Notes

Integrated Sensing-Memory-Computing Artificial Tactile System for Physiological Signal Processing Based on ITO Nanowire Synaptic Transistors

  • Authors: Y. Zhang, J. Xu, M. Wei, S.A. Ramakrishna, F. Wang (Fengyun Wang)
    Journal: ACS Applied Nano Materials
    Year: 2025

Negative Photoconductivity in Nanowires/QDs Heterojunction Network for Neuromorphic Visual Perception

  • Authors: S. Xin, T. Wang, K. Dou, Y. Zhou, F. Wang (Fengyun Wang)
    Journal: Advanced Functional Materials
    Year: 2025

Bionic Gustatory Receptor for pH Identification Based on ZnSnO Nanofiber Synaptic Transistor

  • Authors: P. Xu, W. Zhang, F. Wang (Fengyun Wang)
    Journal: IEEE Electron Device Letters
    Year: 2025

Flexible Electrolyte-Gated Transistor Based on InZnSnO Nanowires for Self-Adaptive Applications

  • Authors: L. Zheng, Z. Liu, S. Xin, R. Seeram, F. Wang (Fengyun Wang)
    Journal: Applied Materials Today
    Year: 2024

Fast Ultraviolet Detection Response Achieved in High-Quality Cs₃Bi₂Br₉ Single Crystals Grown by an Improved Anti-Solvent Method

  • Authors: T. Wang, S. Xin, Y. Liu, B. Teng, S. Ji
    Journal: Journal of Materials Chemistry C
    Year: 2024

 

 

Aleksandra Wierzbicka | Experimental methods | Women Researcher Award

Dr. Aleksandra Wierzbicka | Experimental methods | Women Researcher Award

Institute of Physics, Polish Academy of Sciences | Poland

Dr. Aleksandra Wierzbicka is a highly accomplished physicist and materials science researcher, currently serving as an Assistant Professor at the Institute of Physics of the Polish Academy of Sciences (IFPAN) in Warsaw. With over a decade of expertise in X-ray diffraction, epitaxy techniques, and nanostructure analysis, she is recognized for her contributions to both scientific research and education. Her work bridges fundamental physics and practical applications in nanoelectronics, optoelectronics, and photonics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Aleksandra began her academic journey at the University of Warsaw, earning her undergraduate degree in Physics, specializing in Material Physics and Optics. She continued with a Master’s degree in X-ray Structural Research, where she explored mixed semiconductor crystals. Her deep interest in structural studies of materials led her to pursue a PhD at the Institute of Physics (PAS), where she conducted pioneering research on epitaxial lateral overgrowth structures, focusing on stress and defects in semiconductors using X-ray diffraction and topography techniques.

🧪 Professional Endeavors

Since 2010, she has held the position of Assistant Professor at IFPAN, where her role spans scientific research, grant writing, student supervision, and international collaborations. In parallel, she has also contributed to physics education at the Jan Nowak-Jeziorański Community Primary School No. 1 STO, demonstrating her dedication to science communication and youth development.

🔬 Contributions and Research Focus

Dr. Wierzbicka has been at the forefront of innovative epitaxial growth techniques, particularly molecular beam epitaxy (MBE) and liquid-phase epitaxy (LPE). Her work emphasizes the structural characterization of GaN nanowires, core-shell structures, and low-dimensional semiconductor heterostructures. She is also an expert in high-resolution X-ray diffraction and synchrotron-based techniques, contributing to the understanding of lattice disorder, defect distribution, and internal electric fields in complex materials.

🌍 Impact and Influence

Her research has been instrumental in numerous European Union-funded projects, including COST actions, OPUS, SONATA, and NanoBiom, positioning her as a key player in collaborative science. As a project manager and contractor in various high-impact studies, her work has enabled breakthroughs in semiconductor device engineering, sensor technology, and photonics. Her invited talks—such as at CMD 31 in Braga, Portugal further reflect her international recognition.

📊 Academic Citations

Dr. Wierzbicka is the author of 63 peer-reviewed scientific publications, with a citation count exceeding 550 (as per Web of Science). Her ResearcherID (C-8880-2016) and ORCID (0000-0003-1379-5941) profiles showcase her scholarly contributions and visibility in the field of solid-state physics and nanomaterials.

🧠 Research Skills

Aleksandra possesses specialized expertise in:

  • High-resolution X-ray diffraction

  • Synchrotron radiation techniques

  • MBE growth methods

  • Defect and stress analysis

  • Scientific software such as Origin, Panalytical Epitaxy, VESTA, and WinWulff

Her skills are supported by strong computational abilities and analytical rigor, critical for interpreting complex material behavior.

🧑‍🏫 Teaching Experience

In addition to her research, Dr. Wierzbicka is a committed educator, engaging both university students and school-aged learners. Her ability to translate complex physical concepts into understandable content makes her an asset in promoting STEM education. She is actively involved in mentoring and curriculum development in physics.

🏆 Awards and Honors

Dr. Wierzbicka received her PhD with honors, and her continuous involvement in competitive grant programs like Opus, Sonata, and PBS demonstrates the trust placed in her by the scientific community. Being selected as manager and principal investigator in prestigious international projects (e.g., ANKA Synchrotron Facility at KIT) is a strong indicator of her recognized scientific leadership.

🌱 Legacy and Future Contributions

Aleksandra Wierzbicka’s career reflects an ongoing commitment to scientific excellence, education, and international cooperation. She is poised to contribute further to the advancement of nanoscale materials for use in next-generation electronics and optics. Her potential lies not only in her scientific output but also in her ability to inspire and mentor future generations of physicists especially young women in STEM. Looking forward, her trajectory is aligned with leading and shaping global research initiatives in epitaxy and semiconductor technology.

Publications Top Notes

📄Structural and optical properties of in situ Eu-doped ZnCdO/ZnMgO superlattices grown by plasma-assisted molecular beam epitaxy
  • Authors: Anastasiia Lysak, Aleksandra Wierzbicka, Sergio Magalhaes, Piotr Dłużewski, Rafał Jakieła, Michał Szot, Zeinab Khosravizadeh, Abinash Adhikari, Adrian Kozanecki, Ewa Przeździecka

  • Journal: Nanoscale

  • Year: 2025

📄Strain distribution in GaN/AlN superlattices grown on AlN/sapphire templates: comparison of X-ray diffraction and photoluminescence studies
  • Authors: Aleksandra Wierzbicka, Agata Kaminska, Kamil Sobczak, Dawid Jankowski, Kamil Koronski, Pawel Strak, Marta Sobanska, Zbigniew R. Zytkiewicz

  • Journal: Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

  • Year: 2025

📄Influence of the Annealing Temperature on the Properties of {ZnO/CdO}30 Superlattices Deposited on c-Plane Al₂O₃ Substrate by MBE
  • Authors: Anastasiia Lysak, Aleksandra Wierzbicka, Piotr Dłużewski, Marcin Stachowicz, Jacek Sajkowski, Ewa Przezdziecka

  • Journal: Crystals

  • Year: 2025

📄 Enhancing GaN Nanowires Performance Through Partial Coverage with Oxide Shells
  • Authors: Radoslaw Szymon, Eunika Zielony, Marta Sobanska, Tomasz Stachurski, Anna Reszka, Aleksandra Wierzbicka, Sylwia Gieraltowska, Zbigniew R. Zytkiewicz

  • Journal: Small

  • Year: 2024

📄 Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties
  • Authors: Monika Ozga, Eunika Zielony, Aleksandra Wierzbicka, Anna Wolska, Marcin Klepka, Marek Godlewski, Bogdan J. Kowalski, Bartłomiej S. Witkowski

  • Journal: Beilstein Journal of Nanotechnology

  • Year: 2024