Sadia Nazir | Computational Particle Physics | Best Researcher Award

Dr. Sadia Nazir | Computational Particle Physics | Best Researcher Award

The University of Lahore | Pakistan

Dr. Sadia Nazir is a distinguished academic and researcher specializing in High Energy Physics with a focus on Computational Physics and Theoretical Physics. She has demonstrated a strong academic background, having achieved significant milestones in the field of Material Science and General Theory of Relativity. She currently holds the position of Assistant Professor at the Department of Physics at the University of Lahore, Lahore, Pakistan. Throughout her career, she has made notable contributions to energy applications and quantum mechanics.

šŸ‘Øā€šŸŽ“Profile

Google scholar

Scopus

Early Academic Pursuits šŸ“š

Dr. Nazir began her academic journey with a B.Ed. degree from the University of Sargodha. She pursued an M.Sc. in Computational Physics (2007-2009) followed by an M.Phil. in High Energy Physics, specializing in General Theory of Relativity (2012-2014). Her academic excellence culminated in obtaining a PhD in High Energy Physics with a specialization in Theoretical Computational Physics from the Centre for High Energy Physics at the University of the Punjab in 2022.

Professional Endeavors šŸ†

Dr. Nazir has had a significant impact in the field of Physics through her professional roles. She began her teaching career as a Lecturer at Mulhal Science College, Chakwal, from 2010 to 2012. Following this, she joined The University of Lahore, where she served as a Lecturer (2015-2023) and currently holds the position of Assistant Professor since February 2023. Her career trajectory reflects a strong commitment to higher education and academic leadership.

Contributions and Research Focus šŸ”¬

Dr. Nazir’s primary research interests lie in High Energy Physics, Computational Physics, and Material Science. Her work primarily involves theoretical ab-initio calculations, DFT simulations, and the optical, mechanical, and thermoelectric properties of materials for energy harvesting and solar cell applications. Her studies on double perovskites, ferromagnetism, and spintronics have far-reaching implications for the development of next-generation energy devices. Her publications in peer-reviewed journals reflect her significant contributions to the scientific community.

Impact and Influence šŸŒ

Dr. Nazir’s work has made a lasting impact on the scientific community, with her contributions in quantum mechanics, material science, and energy applications influencing numerous researchers and students alike. Her research is focused on developing new materials and devices that can improve energy conversion and storage. Dr. Nazir’s expertise has also contributed to advancing spintronic technologies, which have vast potential for energy efficiency and data processing.

Academic Citations šŸ“‘

Dr. Nazir’s research has gained significant attention in the scientific community, with over 25 published journal papers and highly-cited works on perovskite materials, spintronic devices, and half-metallic ferromagnetism. Her works are widely cited, indicating her research’s importance in advancing energy conversion and quantum mechanics fields.

Research Skills āš™ļø

Dr. Nazir possesses extensive skills in Computational Physics, particularly in DFT simulations, quantum mechanics, and material science modeling. She is proficient in advanced programming languages such as Mathematica, C++, and Origin. Her ability to apply ab-initio simulations to investigate the optoelectronic, thermoelectric, and magnetic properties of materials sets her apart in the academic community.

Teaching Experience šŸ«

With years of teaching experience, Dr. Nazir has served as an instructor for graduate and undergraduate courses at the University of Lahore. Her courses cover various areas such as Quantum Mechanics, Electrodynamics, Differential Geometry, and Mathematical Methods of Physics. She has supervised several M.Phil. and PhD students, guiding them through advanced research topics related to material properties and energy applications. Her teaching is known for its depth and clarity, making complex topics accessible to students.

Legacy and Future Contributions 🌟

Dr. Sadia Nazir is leaving behind a legacy of scientific exploration and academic excellence. Her contributions to computational physics, energy research, and material science will continue to inspire future generations of physicists and researchers. As her work in spintronics, energy harvesting, and solar cell technologies progresses, she is poised to make even more groundbreaking contributions to sustainable energy solutions. Her vision is to bridge the gap between theoretical research and real-world applications in green technologies and energy efficiency.

Publications Top Notes

Systematic study of spin-dependent electronic, mechanical, optoelectronic, and thermoelectric properties of halide double perovskites K2CuCrZ6 (Z= Cl, Br): DFT-calculations

  • Authors: NA Noor, MA Khan, S Niaz, S Mumtaz, S Nazir, KM Elhindi
    Journal: Journal of Physics and Chemistry of Solids
    Year: 2025

Unveiling the half-metallic ferromagnetism and transport properties of LiFeX3 (X = Cl, Br, I) perovskites for energy conversion and data processing devices

  • Authors: MA Yasir, M Bououdina, NA Noor, MM Saad H.-E, S Nazir
    Journal: Optical and Quantum Electronics
    Year: 2024

Investigation of half-metallic properties of Tl2Mo(Cl/Br)6 double perovskites for spintronic devices

  • Authors: Sadia Nazir et al.
    Journal: RSC Advances
    Year: 2024

Innovative multi-layered Fe3O4-Gr/carbon/polypyrrole nanofiber composite: “A new frontier in dielectric enhancement and EMI shielding”

  • Authors: U Anwar, M Rafi, NA Noor, S Nazir, S Mumtaz, IM Moussa
    Journal: RSC Advances
    Year: 2024

Mechanical, Magnetic, and Optical Characteristics of Tm-Based Chalcogenides for Energy-Harvesting Applications

  • Authors: M Asghar, S Nazir, T Hameed, NA Noor, YM Alanazi, S Mumtaz
    Journal: Physica Status Solidi (b)
    Year: 2023

 

 

Ranjita Kumari Mohapatra | High energy physics | Best Researcher Award

Assist. Prof. Dr. Ranjita Kumari Mohapatra | High energy physics | Best Researcher Award

Rajdhani College Bhubaneswar | India

Dr. Ranjita Kumari Mohapatra is an Assistant Professor at Rajdhani College in Bhubaneswar, Odisha, specializing in the field of Physics. Her academic journey spans a rich history of rigorous research, teaching, and contributions to the scientific community. With over a decade of experience, Dr. Mohapatra has made significant strides in the realm of relativistic heavy-ion collisions, strongly interacting matter, and transport coefficients.

šŸ‘Øā€šŸŽ“Profile

Google scholar

Scopus

Early Academic Pursuits šŸŽ“

Dr. Mohapatra’s academic foundation began with her M.Sc. in Physics from Utkal University (2004), followed by a Post-M.Sc. program at the Institute of Physics, Bhubaneswar (2005-2006). Her Ph.D. research, titled Investigating Formation and Evolution of Z(3) Walls and Flow Anisotropies in Relativistic Heavy Ion Collisions, was completed at the Institute of Physics in 2012 under the guidance of Prof. Ajit M. Srivastava.

Professional Endeavors šŸ¢

Dr. Mohapatra’s career trajectory includes post-doctoral fellowships at prestigious institutions such as the Physical Research Laboratory (2012-2014), IIT Bombay (2018-2019), and Banki College (2019-2023). Since February 2023, she has been serving as an Assistant Professor in the Department of Physics at Rajdhani College. Over the years, she has been involved in cutting-edge research and has become a respected educator, imparting knowledge to both undergraduate and postgraduate students.

Contributions and Research Focus šŸ”¬

Dr. Mohapatra’s research focuses on the equation of state of strongly interacting matter, conserved charge fluctuations, and calculation of transport coefficients in relativistic heavy ion collisions. She is currently spearheading an ongoing project funded by the OURIIP seed fund with a grant of Rs. 402,000/-. Her earlier works, such as Z(3) walls and the acoustic oscillations in heavy-ion collisions, have significantly impacted the understanding of QGP (Quark-Gluon Plasma) dynamics and other key phenomena in nuclear physics.

Impact and Influence šŸŒ

Dr. Mohapatra’s contributions to high-energy nuclear physics are invaluable. Her work on flow anisotropies and magnetic fields in relativistic heavy-ion collisions, as well as her studies on quark-hadron transitions, have had a profound influence on the field, advancing the understanding of strongly interacting matter. Her research continues to shape the future of QCD (Quantum Chromodynamics) and phase transitions in the early universe.

Academic Citations šŸ“‘

Dr. Mohapatra has authored numerous influential publications, with more than 19 research papers in renowned journals such as Phys. Rev. C, Phys. Rev. D, and Nucl. Phys. A. Key publications, like her work on inverse magnetic catalysis and transport coefficients, have been cited widely and contribute to the ongoing discourse in nuclear physics. Her work continues to inspire researchers in the fields of quantum chromodynamics and particle physics.

Research Skills 🧠

Dr. Mohapatra’s research expertise includes relativistic hydrodynamics, QCD phase diagram, magnetic catalysis, transport coefficients, and fluctuations in heavy-ion collisions. She has developed key models for understanding conserved charge fluctuations and the influence of magnetic fields on hadron resonance gas models, with significant applications in astrophysics and nuclear physics. Her analytical and computational skills are essential in advancing the field.

Teaching Experience šŸ“š

Dr. Mohapatra’s teaching career spans several prestigious institutions. She has served as a tutor and teaching assistant for undergraduate and postgraduate courses at IIT Bombay, where she taught subjects like nuclear theory and BTech lab courses. At Banki College and Rajdhani College, she has taught undergraduate students in Physics. With a strong pedagogical approach, she instills deep knowledge of nuclear physics and high-energy physics among her students.

Awards and Honors šŸ…

Dr. Mohapatra’s scholarly achievements have earned her significant recognition. She was awarded the OURIIP Seed Fund Research Grant (2021) for her innovative research on strongly interacting matter. Her work has also been acknowledged at national and international conferences, where she has presented her research and contributed to advancing the understanding of heavy-ion collisions.

Legacy and Future Contributions 🌱

As an educator and researcher, Dr. Mohapatra continues to build a lasting legacy through her research contributions and teaching practices. Her future goals include furthering the study of QCD matter, phase transitions, and transport coefficients. Dr. Mohapatra envisions her research aiding in precision measurements and experimental predictions that could revolutionize the understanding of nuclear matter in extreme conditions.

Publications Top Notes

QCD phase diagram and the finite volume fireball: A model study
  • Authors: Shaikh, A., Mohapatra, R.K., Datta, S.
    Journal: Nuclear Physics A
    Year: 2025
Finite Volume Effects on the QCD Chiral Phase Transition Using NJL Model
  • Authors: Shaikh, A., Mohapatra, R.K., Datta, S.
    Journal: Springer Proceedings in Physics
    Year: 2024
Axion mass in a hot QCD plasma
  • Authors: Das, A., Abhishek, A., Mohapatra, R.K., Mishra, H.
    Journal: Proceedings of Science
    Year: 2023
Diffusion matrix associated with the diffusion processes of multiple conserved charges in a hot and dense hadronic matter
  • Authors: Das, A., Mishra, H., Mohapatra, R.K.
    Journal: Physical Review D
    Year: 2022
In Medium Properties of Axion Within a Polyakov Loop Enhanced Nambu-Jona-Lasinio Model
  • Authors: Mohapatra, R.K., Abhishek, A., Das, A., Mishra, H.
    Journal: Springer Proceedings in Physics
    Year: 2022

 

 

 

Peifang Li | Computational Particle Physics | Best Researcher Award

Prof. Peifang Li | Computational Particle Physics | Best Researcher Award

Inner Mongolia Minzu University | China

Peifang Li is a prominent Professor at Inner Mongolia Minzu University, where she serves as the Dean of the College of Physics and Electronic Information. As a member of the Extreme Conditions Physics Research Team, her contributions to the field of Physics have made her a key figure in both research and education. Li was born in Tongliao City, Inner Mongolia, and completed her doctorate in Condensed Matter Physics from Jilin University in 2011. She has been affiliated with Inner Mongolia University for Nationalities since 2006, gaining recognition as a first-level discipline leader in Physics.

šŸ‘Øā€šŸŽ“ Profile

Scopus

Early Academic Pursuits šŸ“š

Prof. Peifang Li’s academic journey began with her interest in Physics, particularly in the study of materials under extreme conditions. After completing her undergraduate education, she pursued advanced studies at Jilin University, where she earned her Ph.D. in Condensed Matter Physics. This period of intense academic engagement allowed her to explore the theoretical and experimental dimensions of material properties under high pressure, which would later become her primary area of research focus.

Professional Endeavors šŸ’¼

In her professional career, Peifang Li has been instrumental in the development of the College of Physics and Electronic Information at Inner Mongolia Minzu University. As Dean, she has managed academic programs and contributed to the strategic direction of the department. Beyond administrative roles, Li is also deeply involved in high-level research, particularly in the fields of high-pressure physics and material science. She leads multiple research projects funded by national and regional bodies, such as the National Natural Science Foundation of China and local autonomous region projects.

Contributions and Research Focus šŸ”¬

Prof. Li’s research focus revolves around the structure and properties of materials under extreme conditions, where she has published more than 60 papers, including 16 SCI-indexed papers. Her work explores the crystal structure, electronic properties, and phase transitions of materials under high pressure. Additionally, she has completed a monograph and secured two national utility model patents. Her contribution to the field has significantly enhanced the understanding of material behaviors in extreme environments, with profound implications for both theoretical research and practical applications.

Impact and Influence šŸŒ

Prof. Peifang Li’s work has had a substantial impact on the field of material science. Her research has not only advanced the scientific community’s understanding of material behavior under high-pressure conditions but also contributed to innovations in practical applications. With an H-index of 68.1 and over 700,000 yuan in funding, her academic influence is vast. Through her leadership in the Extreme Conditions Physics Research Team, Li has made significant strides in the study of materials science, helping shape the future of high-pressure research.

Academic Cites šŸ“Š

Prof. Li has an impressive citation index of 59 across major platforms like Scopus, Web of Science, and PubMed, showcasing the global recognition of her scholarly contributions. Her research has gained traction internationally, with many scholars referencing her work in the field of high-pressure physics and condensed matter physics.

Research Skills 🧠

Prof. Peifang Li is a highly skilled researcher in areas such as density functional theory, high-pressure experiments, and material characterization. Her research involves both theoretical simulations and experimental validations, making her a versatile scholar. Her ability to bridge the gap between theory and practice is one of her greatest strengths, and she continually employs innovative methods to explore new material phases and properties under extreme conditions.

Teaching Experience šŸ«

In addition to her research endeavors, Peifang Li has played a pivotal role in shaping the next generation of physicists. As a master’s supervisor, she has mentored 3 young teachers and 6 postgraduate students. Her teaching philosophy emphasizes the importance of both fundamental knowledge and hands-on research experience, ensuring that her students are well-prepared for careers in academia, industry, and research.

Awards and Honors šŸ…

Prof. Peifang Li’s contributions have been recognized through numerous awards and honors. Notably, she was selected for the New Century 321 Talent Project of Inner Mongolia in both 2019 and 2021. She has also received the prestigious Horqin Scholar title twice (in 2014 and 2019) and led a team to win 1 national first-class course. Her achievements are a testament to her dedication to both academic excellence and research leadership.

Legacy and Future Contributions 🌟

Prof. Peifang Li’s legacy lies in her profound impact on the study of materials under extreme conditions, which has broad implications for technology and innovation. Looking forward, she plans to continue advancing research in high-pressure physics, with a particular focus on new material discoveries. Li also aims to strengthen international collaborations and extend her research’s industrial applications, ensuring that her work contributes not only to academia but also to global technological advancements.

Ā  Publications Top Notes

Modulated electronic properties of borophene nanoribbons using copper and oxygen atoms

Authors: Wang, W., Ma, J., Wang, Y., Zhou, K., Li, P.
Journal: Chemical Physics
Year: 2025

The crystal structure and characteristics of chlorine trifluoride under high-pressure

Authors: Xing, S., Wang, X., Wang, T., Sun, Y., Li, P.
Journal: Chemical Physics Letters
Year: 2024

The impact of halogens on the structural, electronic, and optical properties of vacancy-ordered double perovskites Rb2SeX6 (X=I, Br, Cl)

Authors: Zhang, H., Ou, T., Jiang, W., Li, P., Ma, X.
Journal: Journal of Solid State Chemistry
Year: 2024

Bose-Einstein distribution temperature features of quasiparticles around magnetopolaron in Gaussian quantum wells of alkali halogen ions

Authors: Zhang, X., Sarengaowa, Han, S., Li, P.-F., Sun, Y.
Journal: Chinese Physics B
Year: 2024

Crystal structure and electronic properties of BrF under high-pressure

Authors: Lang, H., Shao, X., Wang, X., Sun, Y., Li, P.
Journal: Chinese Journal of Physics
Year: 2024

 

 

Snezhana Abarzhi | High energy physics | Best Researcher Award

Prof. Dr. Snezhana Abarzhi | High energy physics | Best Researcher Award

California Institute of Technology; The University of Western Australia | United States

šŸ‘Øā€šŸŽ“ Profile

šŸ« Early Academic Pursuits

Prof. Dr. Snezhana I. Abarzhi embarked on her academic journey with a BS in Applied Mathematics and Physics and Molecular Biology from the Moscow Institute for Physics and Technology, graduating Summa Cum Laude in 1990. She further pursued her MS in Applied Mathematics & Physics at the Kapitza Institute for Physical Problems and completed her Ph.D. in Mathematics & Physics at the prestigious Landau Institute for Theoretical Physics. Her doctoral work, guided by Prof. S.I. Anisimov, laid the foundation for her rigorous theoretical exploration of far-from-equilibrium dynamics.

🌟 Professional Endeavors

Dr. Abarzhi’s distinguished career spans global institutions, including her roles as Professor and Chair of Applied Mathematics at the University of Western Australia, Guest Professor at Caltech, and Visiting Professor at Stanford University. With experience ranging from Carnegie Mellon University to the University of Chicago and prestigious fellowships in Germany, Japan, and Russia, she has consistently contributed to the advancement of Theoretical and Applied Physics, Applied Mathematics, and Data Science.

šŸ”¬ Contributions and Research Focus

Her research focuses on the nonlinear, multi-scale, and far-from-equilibrium dynamics of plasmas, fluids, and materials. Dr. Abarzhi is renowned for developing rigorous theoretical approaches to study instabilities, interfaces, and mixing. Key achievements include the discovery of new fluid instabilities, the inertial stabilization mechanisms of interfaces, and the formulation of the special self-similarity class in interfacial mixing. Her theory has redefined understanding in areas like the Rayleigh-Taylor instability.

šŸŒ Impact and Influence

Dr. Abarzhi has made lasting contributions to the scientific community by founding the globally recognized program ā€œTurbulent Mixing and Beyondā€. Her editorial roles and collaborations have enriched academic discourse and supported the advancement of multidisciplinary research. Her work has been featured as Highlights in leading journals and recognized by organizations like the American Physical Society and the National Academy of Sciences.

šŸ“ˆ Academic Cites and Recognitions

With over 183 publications and 350 conference papers, Dr. Abarzhi’s research is widely cited in fields spanning Physics, Mathematics, and Engineering. Her achievements include being a Fellow of the American Physical Society and the International Association of Advanced Materials, and receiving the Science Medal for pioneering contributions.

šŸ› ļø Technical Skills

Her expertise encompasses theoretical modeling, applied mathematics, scientific computing, and data science. Dr. Abarzhi’s ability to bridge complex mathematical frameworks with real-world physical phenomena demonstrates her analytical and computational prowess.

šŸ“š Teaching Experience

As a dedicated educator, Dr. Abarzhi has developed and taught graduate and undergraduate courses in mathematical physics, functional analysis, and complex system modeling. She has mentored numerous Ph.D. candidates and early-career researchers, contributing to the growth of the next generation of scientists.

🌟 Legacy and Future Contributions

Dr. Abarzhi’s work exemplifies the power of interdisciplinary collaboration and theoretical rigor. Her legacy lies in her transformative impact on understanding far-from-equilibrium processes and her efforts to foster scientific synergy. Looking forward, her continued exploration of universal principles in dynamics promises to drive innovations in science and education for decades to come.

Top Noted Publications

On kinematic viscosity, scaling laws and spectral shapes in Rayleigh-Taylor mixing plasma experiments
  • Authors: Snezhana I. Abarzhi, Kurt C. Williams
    Journal: Physics Letters A
    Year: 2024
Data-Based Kinematic Viscosity and Rayleigh–Taylor Mixing Attributes in High-Energy Density Plasmas
  • Authors: Snezhana I. Abarzhi, Kurt C. Williams
    Journal: Atoms
    Year: 2024
Perspective: Group Theory Analysis and Special Self-Similarity Classes in Rayleigh–Taylor and Richtmyer–Meshkov Interfacial Mixing with Variable Accelerations
  • Authors: Snezhana I. Abarzhi
    Journal: Reviews of Modern Plasma Physics
    Year: 2024
On Rayleigh–Taylor Dynamics
  • Authors: Abdul Hasib Rahimyar, Des Hill, James Glimm, Snezhana Abarzhi
    Journal: Atoms
    Year: 2023
Velocity Fluctuations Spectra in Experimental Data on Rayleigh–Taylor Mixing
  • Authors: Kurt C. Williams, Snezhana I. Abarzhi
    Journal: Atmosphere
    Year: 2023

 

 

 

Lin Cheng | High energy physics | Best Researcher Award

Mrs. Lin Cheng | High energy physics | Best Researcher Award

North university of China, China

šŸ‘Øā€šŸŽ“ Profile

Orcid

šŸ“š Early Academic Pursuits

Lin Cheng began their academic journey with aĀ BSc in Information and Communication EngineeringĀ from theĀ North University of ChinaĀ in 2010. Demonstrating a strong foundation in engineering, they advanced to earn bothĀ MSc (2013)Ā andĀ PhD (2021)Ā degrees at theĀ Key Laboratory for Physical Electronics and Devices, Xi’an Jiaotong University, a hub for innovation in photonics and electronic sciences. Lin’s doctoral studies were pivotal, focusing onĀ cutting-edge research in light modulation and surface plasmon technologies, laying the groundwork for their future contributions.

🌟 Professional Endeavors

As anĀ Associate ProfessorĀ at theĀ School of Semiconductor and Physics, North University of China since 2021, Lin Cheng has become a leading academic in photonics and metamaterials. Their international experience includes a visiting student tenure at theĀ University of Ottawa, Canada, fromĀ September 2019 to October 2020, where they collaborated onĀ advanced light propagation control techniques.

šŸ”¬ Contributions and Research Focus

Lin’s research is centered onĀ metasurfaces, surface plasmon applications, nonlinear optics, epsilon-near-zero materials, and multi-wave mixing in Rubidium, contributing significantly to fields likeĀ light modulation and color display technologies. Their work has advanced the understanding ofĀ nonlinear antennas, tunable meta-absorbers, and innovative approaches toĀ beam manipulation.

šŸŒ Impact and Influence

Lin Cheng’s work has made a significant impact in both academia and applied physics. Her published journal papers, includingĀ “Superscattering, Superabsorption, and Nonreciprocity in Nonlinear Antennas” (ACS Photonics, 2021), have become vital resources for researchers worldwide. Her studies on plasmonic colorsĀ andĀ dynamic tunable radiationĀ have influenced emergingĀ metamaterial technologies, inspiring innovations in optics, and photonics.

šŸ“Š Academic Citations

With a robust portfolio ofĀ 10 journal publications, Lin’s work has earned numerous citations, reflecting theĀ scientific community’s recognitionĀ of their contributions toĀ optics and photonics. Their most notable paper,Ā Superscattering, Superabsorption, and Nonreciprocity in Nonlinear Antennas, published inĀ  ACS Photonics (2021), showcases their innovative approach to solvingĀ complex optical challenges.

šŸ’» Technical Skills

Lin Cheng excels in cutting-edgeĀ simulation and modeling tools such as COMSOL and MATLAB for optical designs. Her technical expertise spans plasmonic structure fabrication,Ā multi-wave mixing analysis, andĀ epsilon-near-zero metamaterial development, making her a leader in physics, optical and photonic research.

šŸ† Legacy and Future Contributions

WithĀ four funded projectsĀ totaling RMB 490,000, Lin is poised to make transformative contributions toĀ light modulation and metasurface technologies. TheirĀ National Natural Science Foundation of China grant (2024–2026)Ā supports research intoĀ nonlinear metasurfaces, signaling their commitment toĀ shaping the future of photonics. Lin’s legacy will be defined by their dedication toĀ advancing optical sciences and mentoring future researchers.Ā 

Top Noted Publications

Superscattering, Superabsorption, and Nonreciprocity in Nonlinear Antennas
  • Authors: Lin Cheng, Rasoul Alaee, Akbar Safari, Mohammad Karimi, Lei Zhang, Boyd Robert
    Journal: ACS Photonics
    Year: 2021
Manipulation of a Ring-shaped Beam via Spatial Self- and Cross-phase Modulation in Lower Intensity
  • Authors: Lin Cheng, Zhaoyang Zhang, Lei Zhang, Danmeng Ma, Gaoguo Yang, Tian Dong, Yanpeng Zhang
    Journal: Phys. Chem. Chem. Phys.
    Year: 2019
Extrinsic Polarization-enabled Covert Plasmonic Colors using Aluminum Nanostructures
  • Authors: Lin Cheng, Kun Wang, Jianyong Mao, Xiao Ming Goh, Zhiqin Chu, Yanpeng Zhang, Lei Zhang
    Journal: Ann. Phys. (Berl.)
    Year: 2019
Competition and Energy Transfer between Forward and Backward Four-Wave Mixing via Atomic Coherence
  • Authors: Lin Cheng, Yaling Tian, Yize Liu, Yanpeng Zhang, Kangkang Li, Yang Liu, Ruizhou Liu
    Journal: IEEE J. Quantum Electron.
    Year: 2017
Modulation of the High-order Lagurre-Gaussian Beam in Dressing Four-Wave Mixing
  • Authors: Lin Cheng, Xing Liu, Yanyong Sun, Kun Wang, Lei Zhang, Yanpeng Zhang
    Journal: IEEE J. Quantum Electron.
    Year: 2018
Nonlinear Antennas with Tunable Radiation Patterns in Near Infrared
  • Authors: Lin Cheng, Lei Zhang
    Journal: Journal of Synthetic Crystals
    Year: 2021

 

 

 

Emad Ghanim | Nuclear Physics | Applied Physics Innovation Award

Assoc. Prof. Dr. Emad Ghanim |Nuclear Physics | Applied Physics Innovation Award

Assoc Prof of Radiation Physics, Beni-suef university, Egypt

Dr. Emad Hamed Mohamed Ghanim is an Associate Professor of Radiation Physics at Beni-Suef University, Egypt, with over 30 years of academic and research experience in nuclear and radiation physics. He holds a Ph.D. in Radiation Physics and has extensive teaching experience in various physics and engineering disciplines. His research focuses on radiation protection, nuclear dosimetry, environmental radioactivity, and the development of radiation detection technologies.

šŸ‘Øā€šŸŽ“Ā Profiles

Google scholar

Scopus

šŸ“š Education

  • Ph.D. in Radiation Physics, Menoufiya University (2010)
  • M.Sc. in Radiation Physics, Menoufiya University (1995)
  • B.Sc. in Physics, Menoufiya University (1988)

šŸ§‘ā€šŸ« Professional Experience

  • Associate Professor, Radiation Physics, Beni-Suef University (Since Jan 2021) šŸ«
  • Lecturer, Radiation Physics, Beni-Suef University (2010-2020) šŸ«
  • Teacher Assistant, Physics, Beni-Suef University (2003-2010) šŸ«
  • Lecturer, Physics, Menoufiya University (1995-2003) šŸŽ“
  • Researcher, Nuclear & Radiation Research Lab, Menoufiya University (1991-2010) šŸ§‘ā€šŸ”¬

Key Research Interests šŸŒāš›ļø

  • Radiation Dosimetry: Measuring ionizing and non-ionizing radiation doses for environmental and safety applications.
  • Nuclear and Radiation Pollution: Studying radiation exposure in various environments and assessing health risks.
  • Environmental Radioecology: Investigating radioisotopes in geological samples, natural rocks, and sediments.
  • Advanced Nuclear Instruments: Developing electronic equipment and techniques for radiation protection and monitoring.
  • Age Dating & Radionuclides: Utilizing nuclear and analytical methods to date natural materials and study radiation impacts.

Global Impact & Contributions 🌐🧪

Dr. Ghanim is an active participant in international conferences on radiation and nuclear science. He has attended and contributed to key gatherings such as:

  • International Conferences on Radiation Sciences (e.g., RAD, RAP, and NUPPAC series)
  • Seminars on nuclear applications, radiation safety, and environmental protection
  • Workshops on research proposals, radioisotope applications, and environmental analysis

His research and collaborations extend to global institutions like JINR (Russia) and the Egyptian Atomic Energy Authority (EAEA).

šŸ–„ļø Computer & IT Skills

  • Proficient in Windows OS, Office Suite, Data Analysis Software (Origin, GraphFit) šŸ–„ļø
  • Specialized in Radionuclide Spectroscopy and Gamma Spectroscopy analysis āš›ļø

Top Noted Publications

The impact of the broad range of gamma doses on follow-up fission fragment track parameters in CR-39 radiation detector
  • Authors: Othman, S.M., El-Mesady, I.A., El-badawy, A.S., Ghanim, E.H.
    Journal: Applied Radiation and Isotopes
    Year: 2024
Alpha particle spectrometry based on the mean grey level and visibility of track etch-pit in CR-39 Nuclear Track Detector
  • Authors: Al-Sayed, A., El Ghazaly, M., Ghanim, E.H., El-Naggar, H.I., Dawood, M.S.
    Journal: Physica Scripta
    Year: 2022
On the registration of low energy alpha particle with modified GafChromic EBT2 radiochromic film
  • Authors: El-Naggar, H.I., Ghanim, E.H., El Ghazaly, M., Salama, T.T.
    Journal: Radiation Physics and Chemistry
    Year: 2022
Alpha particle detection by MakrofolĀ® DE1-1 and CR-39 NTDs: A comparative study
  • Authors: Ghanim, E.H., El Ghazaly, M., El-Naggar, H.I.
    Journal: Radiation Physics and Chemistry
    Year: 2020
Optical, structural and nuclear radiation security properties of newly fabricated V2O5-SrO-PbO glass system
  • Authors: Kavaz, E., Ghanim, E.H., Abouhaswa, A.S.
    Journal: Journal of Non-Crystalline Solids
    Year: 2020