N. Dhachanamoorthi | Particle physics and cosmology | Best Researcher Award

Dr. N. Dhachanamoorthi | Particle physics and cosmology | Best Researcher Award

Vellalar College for Women | India

Dr. N. Dhachanamoorthi is a dedicated academician and researcher specializing in Physics, with a deep focus on material science and nanotechnology. Holding an M.Sc., M.Phil., and Ph.D. in Physics from Bharathiar University, Dr. Dhachanamoorthi has spent over a decade shaping the future of scientific research and education. Currently, he serves as the Assistant Professor & Head of the Department at Vellalar College for Women, Erode. His journey is characterized by a blend of academic excellence, research innovation, and mentoring future scientists.

👹‍🎓Profile

Scopus

📚 Early Academic Pursuits

Dr. Dhachanamoorthi’s academic journey began with a strong foundation in Physics, completing his M.Sc. with 70.88% and M.Phil. with 52.66%. His Ph.D. research on nanocomposites further solidified his commitment to advancing scientific knowledge. Early on, he demonstrated an innate ability to understand complex concepts and engage in problem-solving, which later translated into his prolific research output. His strong academic record reflects his relentless pursuit of knowledge.

🎓 Professional Endeavors

Throughout his career, Dr. Dhachanamoorthi has worked at Vellalar College for Women, where he holds the position of Assistant Professor and Head of the Department of Physics. In this role, he has significantly contributed to curriculum development and department leadership. His role as staff in charge of the Central Research Laboratory, which houses sophisticated equipment like FTIR, UV-Vis, HPLC, and Atomic Absorption Spectrophotometer, highlights his deep involvement in research facilitation and advancement at the institution. He has served as a mentor to many budding scientists and researchers, helping them develop critical skills in physics and materials science.

🔬 Contributions and Research Focus

Dr. Dhachanamoorthi’s research focus is centered on nanocomposites, polymers, and materials science, specifically studying the synthesis, characterization, and modification of various polymer nanocomposites. His work on Polypyrrole-Nickel (II) Oxide Nanocomposites and Polyaniline-Iron Oxide Composites has contributed significantly to the field of material modification for enhancing electrical, optical, and mechanical properties. His research is of great relevance to various applications, from nanotechnology to energy materials, making his work crucial in the modern era of material innovations.

đŸ§‘â€đŸ« Research Skills and Teaching Experience

As an academic, Dr. Dhachanamoorthi has built a solid foundation in both teaching and research. He has handled undergraduate and postgraduate courses in Mechanics, Quantum Mechanics, Electromagnetic Theory, and Molecular Spectroscopy. His experience also extends to managing labs for general and specialized courses, including electronics and microprocessors. His teaching methodologies emphasize hands-on experience and active learning, ensuring students gain a comprehensive understanding of theoretical concepts while honing practical skills.

🔼 Legacy and Future Contributions

Dr. Dhachanamoorthi’s legacy is rooted in his passion for research, commitment to excellence, and dedication to mentoring. As he looks to the future, his focus will likely be on expanding his work in nanomaterials and sustainable technologies. With his strong research foundation and an ever-growing interest in interdisciplinary collaboration, Dr. Dhachanamoorthi is poised to make even more remarkable contributions to the scientific world in the years to come.

Publications Top Notes

Effective move of Polypyrrole/TiO2 hybrid nanocomposites on removal of methylene blue dye by photocatalytic activity

  • Authors: Dhachanamoorthi, N., Oviya, K., Sugumaran, S., Jeshaa Dharshini, K., Aishwarya, M.
    Journal: Chemical Physics Impact
    Year: 2024

Synthesis and characterization of polypyrrole-zinc oxide core-shell hybrid polymer nanocomposites

  • Authors: Dhachanamoorthi, N., Jothi, M., Tamilselvan, S.
    Journal: International Journal of Scientific and Technology Research
    Year: 2020, 9(2), pp. 441–451

A novel hybrid organic–inorganic CdO doped poly-O-toluidine polymer nanocomposite for gram-positive anti-microbial activity

  • Authors: Tamilselvan, S., Dhachanamoorthi, N., Thiyagarajan, R.
    Journal: International Journal of Scientific and Technology Research
    Year: 2019

Synthesis of nano Al2O3–poly(O-toluidine) composites and investigations on the additive influences in its characters

  • Authors: Thanu, T.C., Chitra, G., Aravindan, S., Dhachanamoorthi, N.
    Journal: International Journal of ChemTech Research
    Year: 2015

Influence of annealing effects on polyaniline for good microstructural modification

  • Authors: Begum, A.N., Dhachanamoorthi, N., Saravanan, M.E.R., Manoharan, D., Ponnuswamy, V.
    Journal: Optik
    Year: 2013

 

 

Bishwabhusan Sutar | Particle physics and cosmology | Young Scientist Award

Mr. Bishwabhusan Sutar | Particle physics and cosmology | Young Scientist Award

Research scholar at C.V. Raman Global University, Odisha, India

👹‍🎓 Profiles

🌟Summary

🔍 Passionate Researcher & Educator: Currently pursuing a Ph.D. in Mathematics at C.V. Raman Global University. Deeply interested in cosmology, mathematical physics, and integral transforms, with a strong commitment to teaching and inspiring students. Actively contributing to the academic world through research in modified theories of gravity and cosmological wormholes. Seeking an Assistant Professor position in Mathematics to continue academic and research growth.

🎓Education

🎓 Ph.D. in Mathematics (2021-Present)
      C.V. Raman Global University, Bhubaneswar, Odisha
      Thesis: Cosmological wormholes in general and modified theories of gravity
      CGPA: 7.69 (Coursework)

🎓 M.Sc. in Mathematics (2017-2019)
      Sambalpur University, Sambalpur, Odisha
First Class with Distinction

🎓 B.Sc. in Mathematics (2014-2017)
      Utkal University, Bhubaneswar, Odisha
      Honours: 77%

đŸ’ŒProfessional Experience

📚 Teaching Assistant (2021-Present)
      C.V. Raman Global University, Bhubaneswar, Odisha

  • Assisted in delivering undergraduate mathematics courses.
  • Led tutorials and provided academic support for B.Tech, Diploma, and M.Sc. students.

đŸ§‘â€đŸ« Research Scholar (2021-Present)
     C.V. Raman Global University, Bhubaneswar, Odisha

  • Conducting research in cosmology, mathematical physics, and modified gravity theories.

🔬Research Interests

🌌 Cosmology & Gravitational Physics

  • Focus on cosmological wormholes and modified theories of gravity
  • Exploring Lyra manifold, Brans-Dicke theory, and Barber’s second self-creation theory

📐 Mathematical Physics & Applied Mathematics

  • Applications of integral transforms in solving differential equations
  • Advanced mathematical models for real-world physical phenomena

🏆 Awards & Recognition

  • Selected for PostGraduate Scholarship by the Institute of Mathematics and Applications, Odisha
  • Awarded e-medhabruti Merit Scholarship by the Government of Odisha

đŸ–„Skills

đŸ–„ïž Technical: Latex, Mathematica, Matlab, Python, MS Office
đŸ—Łïž Soft Skills: Effective Communication, Teaching, Analytical Thinking, Problem Solving

 Publications

Traversable wormhole supported by non-exotic gravitational fluid in the Lyra manifold
  • Authors: Sutar, B., Mahanta, K.L., Sahoo, R.R.
    Journal: Chinese Journal of Physics
    Year: 2024
Traversable wormhole solutions in Barber’s second self-creation theory
  • Authors: Sutar, B., Mahanta, K.L., Sahoo, R.R.
    Journal: Indian Journal of Physics
    Year: 2024
Traversable wormhole solutions admitting Karmarkar condition in Lyra manifold
  • Authors: Sutar, B., Mahanta, K.L., Sahoo, R.R.
    Journal: European Physical Journal Plus
    Year: 2023

 

 

Jun Zhang | Particle Experiments | Best Researcher Award

Dr. Jun Zhang | Particle Experiments | Best Researcher Award

Assistant Professor at Hefei University of Technology, China

Dr. Zhang Jun is an Assistant Professor in the School of Mechanical Engineering at Hefei University of Technology. His research focuses on heat and mass transfer in cryogenic systems, with significant contributions to oscillating heat pipes and superconducting technologies. Dr. Zhang obtained his Ph.D. in Engineering in Power Engineering and Thermophysics from Xi’an Jiaotong University in 2016. He has authored and co-authored numerous publications in prestigious journals such as Cryogenics, Applied Physics Letters, and Physics of Fluids. His research also explores graphene membranes and memristors, contributing to innovative solutions in nanotechnology and vacuum science. Dr. Zhang is an active member of the academic community, continuously advancing the understanding of complex thermal-fluid systems, especially in cryogenic and nanomaterial applications.

Profile🎓

🧑‍🎓 Early Academic Pursuits

Dr. Zhang Jun embarked on his academic journey with a keen interest in thermodynamics and heat transfer systems. He completed his Ph.D. in Engineering in Power Engineering and Thermophysics from Xi’an Jiaotong University in September 2016. His research during this period was foundational in understanding heat and mass transfer processes in cryogenic systems, particularly in superfluid helium environments. His doctoral studies laid the groundwork for his future career in energy systems, nano-engineering, and thermal management technologies. Dr. Zhang’s early work also demonstrated a strong aptitude for interdisciplinary research, integrating principles of material science with thermodynamics.

đŸ‘šâ€đŸ« Professional Endeavors

Since December 2016, Dr. Zhang Jun has been serving as an Assistant Professor in the School of Mechanical Engineering at Hefei University of Technology. In this role, he has contributed significantly to both research and education, mentoring students and collaborating with fellow researchers on a range of innovative projects. His professional endeavors are marked by his expertise in cryogenic systems, nano-materials, and advanced heat transfer technologies, with a special focus on helium-based oscillating heat pipes and superconducting systems. His research has practical implications in diverse fields such as space exploration, nano-technology, and energy systems.

🧑‍🔬 Contributions and Research Focus

Dr. Zhang Jun’s research is centered around heat and mass transfer in cryogenic systems, with particular emphasis on superfluid helium and oscillating heat pipes. His work has also extended to the study of graphene membranes and vacuum systems, pushing the boundaries of nano-material science. Notable contributions include groundbreaking studies on the thermal performance of superfluid helium systems and gas diffusion processes through porous graphene membranes. His pioneering research on memristors and nano-composite materials has made significant strides in the fields of nanoelectronics and energy-efficient technologies. Through his work, Dr. Zhang has bridged the gap between theoretical research and practical applications, advancing both scientific knowledge and technological innovation.

🌍 Impact and Influence

Dr. Zhang Jun has made a notable impact on the fields of cryogenics, nanotechnology, and thermal-fluid dynamics. His published articles in high-impact journals such as Cryogenics, Physics of Fluids, and Applied Physics Letters are regularly cited, influencing researchers and industry leaders alike. His work on cryogenic heat transfer has advanced the understanding of superconducting systems and energy-efficient technologies, making significant contributions to industries like energy storage, space technology, and advanced manufacturing. Dr. Zhang’s influence extends beyond academia, as his research has been adopted by industry professionals working on thermal systems and nano-engineered materials.

📚 Academic Cites

Dr. Zhang Jun’s work has been extensively cited in the scientific community, further solidifying his reputation as a thought leader in thermal engineering and nano-materials. Key articles, such as his study on helium-based oscillating heat pipes and superfluid helium cryogenic systems, have garnered significant attention in journals like Cryogenics and Journal of Vacuum Science and Technology. His research on graphene membranes and gas diffusion processes has also led to influential publications in journals such as Physics of Fluids and Vacuum. Dr. Zhang’s ability to address complex thermal-fluid problems and offer innovative solutions has contributed to his growing citation index, reflecting his influence on the field.

đŸ› ïž Technical Skills

Dr. Zhang Jun possesses a broad set of technical skills that are vital to his interdisciplinary research. His expertise spans areas such as thermal-fluid dynamics, nano-material engineering, cryogenics, and vacuum technology. He is proficient in advanced thermal analysis, simulation tools, and material characterization techniques. His work on nano-composite materials, graphene membranes, and heat exchanger systems is supported by his strong background in computational modeling, experimental research, and system optimization. Additionally, his technical proficiency extends to nanoelectronics, memristor technology, and energy-efficient systems, allowing him to explore new frontiers in nano-manufacturing and superconducting technologies.

đŸ‘šâ€đŸ« Teaching Experience

As an Assistant Professor at Hefei University of Technology, Dr. Zhang Jun has demonstrated a passion for teaching and mentoring the next generation of engineers. His courses cover a range of topics in mechanical engineering, including cryogenic systems, thermal engineering, and nano-materials. Dr. Zhang’s teaching style blends theoretical rigor with practical applications, encouraging students to explore the latest technologies in advanced thermal systems and material science. He also guides students through research projects in areas like nanoelectronics, cryogenic heat transfer, and superfluid helium systems, preparing them for careers in both academia and industry. His dedication to research-based education has made him a respected figure in his department.

đŸŒ± Legacy and Future Contributions

Dr. Zhang Jun’s legacy in thermal engineering and cryogenics is already firmly established through his influential research and academic contributions. Looking forward, he is poised to continue making transformative contributions in the fields of cryogenic system optimization, nano-engineered materials, and advanced heat transfer technologies. Dr. Zhang’s future research directions include exploring the integration of nano-materials in sustainable energy systems and advancing the capabilities of superconducting systems for applications in quantum computing and space exploration. As an active researcher and educator, Dr. Zhang is dedicated to expanding the boundaries of thermophysics and contributing to the development of next-generation technologies that address global energy challenges and sustainable development goals.

Top Noted Publications📖

Investigation on the surface diffusion process of gas molecules in porous graphene membranes
  • Authors: Jun Zhang, Chenhui Liu, Rui Huang, Xudi Wang, Qing Cao
    Journal: Physics of Fluids
    Year: 2024

Application of Helium-Based oscillating heat pipes in cryogenic superconducting system

  • Authors: Jun Zhang, Rui Huang, Changcheng Ma, Yi Huo, Xudi Wang, Qing Cao
    Journal: Cryogenics
    Year: 2024

Resistive switching behavior of the memristor based on WS2 nanosheets and polyvinylpyrrolidone nanocomposites

  • Authors: Qing Cao, Limiao Xiong, Xudong Yuan, Pengcheng Li, Jun Wu, Hailin Bi, Jun Zhang
    Journal: Applied Physics Letters
    Year: 2022

New leak element based on transfer-free single-layer graphene membrane

  • Authors: Xudi Wang, Hanwen Lin, Hailin Bi, Qing Cao, Donghui Meng, Lichen Sun, Guohua Ren, Jiadong Qi, Jun Zhang
    Journal: Vacuum
    Year: 2022

 

 

Grigorios Panotopoulos | Particle physics and cosmology | Best Researcher Award

Assist Prof Dr. Grigorios Panotopoulos | Particle physics and cosmology | Best Researcher Award 

Department of Physics, Universidad de la Frontera, Chile

Grigorios Panotopoulos is a Greek physicist specializing in theoretical cosmology and high-energy physics. Born on July 22, 1975, he currently works at the Department of Physical Sciences at Universidad de la Frontera in Chile. With extensive international experience, including postdoctoral positions at renowned institutions such as LMU Munich and the University of Lisbon, Panotopoulos has made significant contributions to understanding the universe’s fundamental aspects.

Profile:

Education:

Grigorios completed his B.Sc. in Physics at the National and Kapodistrian University of Athens in 2000, followed by an M.Sc. in particle physics from the University of Crete in 2001. He earned his Ph.D. in Theoretical Cosmology from the University of Crete in 2006, focusing on cosmological evolution in brane-worlds. His academic journey reflects a strong foundation in both theoretical frameworks and practical applications in cosmology.

Professional experience:

With over 15 years of research experience, Grigorios Panotopoulos has held various postdoctoral positions, including at LMU Munich and the University of Lisbon. He has been involved in significant research projects related to dark matter and gravity modifications. Currently, he serves at Universidad de la Frontera, where he teaches and leads research on early universe physics and astroparticle phenomena. His collaborative work spans multiple countries and institutions, emphasizing his commitment to advancing the field.

Research focus:

Grigorios Panotopoulos’s research primarily revolves around high-energy physics and cosmology, specifically in areas such as inflation, dark matter, and alternative theories of gravity. He explores the physics of the early universe, focusing on extra dimensions and phenomena beyond the Standard Model. His work aims to bridge theoretical developments with observable phenomena, contributing to a deeper understanding of cosmic evolution and fundamental forces.

Awards and Honors:

Grigorios has received several accolades throughout his academic career, including a National Scholarships Foundation award for excellence in undergraduate studies in Greece. He won the 1st Prize at the 10th Summer School on Advanced Physics in 1998 and was awarded a Marie Curie Fellowship for his advanced studies. In 2020, he was recognized among the top 2% most influential scientists globally, highlighting his impact in theoretical physics.

Publication Top Notes:

  • Title: Quasinormal modes for a non-minimally coupled scalar field in a five-dimensional Einstein-Power-Maxwell background
    Authors: A. RincĂłn, P. A. Gonzalez, G. Panotopoulos, J. Saavedra, Y. Vasquez
    Year: 2022
    Citations: 10
  • Title: On the impact of non-local gravity on compact stars
    Authors: G. Panotopoulos, J. Rubio, I. Lopes
    Year: 2022
    Citations: 5
  • Title: Orbits of light rays in (1+2)-dimensional Einstein-Power-Maxwell gravity: Exact analytic solution to the null geodesic equations
    Authors: G. Panotopoulos, A. RincĂłn
    Year: 2022
    Citations: 4
  • Title: Charged polytropic compact stars in 4D Einstein-Gauss-Bonnet gravity
    Authors: G. Panotopoulos, A. Pradhan, T. Tangphati, A. Banerjee
    Year: 2022
    Citations: 3
  • Title: Binary X-ray sources in massive Brans-Dicke gravity
    Authors: G. Panotopoulos, A. RincĂłn, I. Lopes
    Year: 2022
    Citations: 7
  • Title: Tidal deformability and radial oscillations of anisotropic polytropic spheres
    Authors: J. D. V. Arbañil, G. Panotopoulos
    Year: 2022
    Citations: 6
  • Title: Slowly rotating dark energy stars
    Authors: G. Panotopoulos, A. RincĂłn, I. Lopes
    Year: 2021
    Citations: 12
  • Title: Interacting dark sector: Lagrangian formulation based on two canonical scalar fields
    Authors: G. Panotopoulos, I. Lopes
    Year: 2021
    Citations: 2
  • Title: Anisotropic Stars in 4D Einstein-Gauss-Bonnet Gravity
    Authors: T. Tangphati, A. Pradhan, A. Banerjee, G. Panotopoulos
    Year: 2021
    Citations: 8
  • Title: Accretion of matter and spectra of Binary X-ray sources in Massive Gravity
    Authors: G. Panotopoulos, A. RincĂłn, I. Lopes
    Year: 2021
    Citations: 11

 

 

Weihong Gao | Computational Particle Physics | Women Researcher Award

Mrs. Weihong Gao | Computational Particle Physics | Women Researcher Award

Associate Professor at Harbin Engineering University in China

Dr. Weihong Gao is an esteemed Associate Professor at the School of Materials Science and Chemical Engineering, Harbin Engineering University. With a research career spanning over a decade, Dr. Gao has made significant contributions to the study of shape memory alloys, thermoelectric materials, and material surface interactions. After completing her Ph.D. at Harbin Institute of Technology, she furthered her research through postdoctoral positions and visiting scholar programs at prestigious institutions such as the University of Houston and the National Institute for Materials Science (NIMS) in Japan. Her work is frequently published in leading scientific journals, where she collaborates with experts worldwide. Dr. Gao is also actively involved in mentoring young researchers and contributing to advancing knowledge in materials science.

Profile:

Education:

Dr. Weihong Gao began her academic journey in 2005 by earning a Bachelor’s degree in Materials Physics from the School of Materials Science and Chemical Engineering at Harbin Engineering University, China, in 2009. Continuing her pursuit of knowledge, she completed his Master’s degree in Materials Physics and Chemistry from the same institution in 2012. Dr. Gao achieved her Ph.D. in Materials Physics and Chemistry from the Harbin Institute of Technology in 2015. During her Ph.D., Dr. Gao expanded her horizons by working as a visiting scholar at the University of Houston’s Smart Materials and Structure Laboratory. Her education has been deeply interdisciplinary, with a strong emphasis on advanced materials research, making him a notable figure in materials physics and engineering.

Professional experience:

Dr. Weihong Gao’s professional experience spans multiple esteemed institutions. After completing her Ph.D. in 2015, she worked as a visiting scholar at the Smart Materials and Structure Laboratory at the University of Houston. In 2017, she took on a postdoctoral position in Materials Science and Engineering at the Guangdong University of Technology, further enriching her expertise. From 2017 to 2019, Dr. Gao also worked as a visiting scholar at the Texas Center for Superconductivity at the University of Houston. In 2019, she moved to the National Institute for Materials Science (NIMS) in Japan as a postdoc, where she contributed to groundbreaking research in thermoelectrics. Currently, Dr. Gao serves as an Associate Professor at Harbin Engineering University, where she leads research on shape memory alloys, thermoelectric materials, and material surfaces and interfaces.

Research focus:

Dr. Weihong Gao’s research is centered around advanced materials, specifically shape memory alloys, thermoelectric materials, and material surfaces and interfaces. Her expertise in first-principles calculations enables him to analyze and predict the behavior of materials at the atomic level, contributing to developments in both theoretical and applied materials science. Dr. Gao is particularly interested in improving the mechanical properties and thermal stability of shape memory alloys, which have applications in aerospace, automotive, and medical devices. Additionally, her work on thermoelectric materials focuses on optimizing energy conversion efficiency, a critical area for sustainable energy solutions. Her research combines experimental methods and computational simulations, aiming to enhance the performance of advanced materials in extreme environments.

Award and Honors:

Dr. Weihong Gao has received numerous accolades throughout her research career for her outstanding contributions to materials science. Her work on shape memory alloys and thermoelectric materials has earned recognition in international journals, leading to invitations to serve as a visiting scholar in world-renowned laboratories like the University of Houston and the Texas Center for Superconductivity. She has also been the recipient of several postdoctoral fellowships, including at the prestigious National Institute for Materials Science (NIMS) in Japan. Dr. Gao’s commitment to research excellence has been recognized with multiple awards from institutions in China and beyond, solidifying her reputation as a leading figure in the field of materials physics and chemistry.

Publication Top Notes:

  • Classical tribology and charge-energy evolution theory cooperate to determine nitrided ceramic coating/metal substrate interfacial friction
    Guotan Liu, Zhihao Huang, Weihong Gao*, Bin Sun, Yunxiang Tong, Guosheng Huang*, Yudong Fu*
    Acta Materialia 277 (2023) 120197
  • Data-driven high elastocaloric NiMn-based shape memory alloy optimization with machine learning
    Y. Yang, H. Fu, W. Gao*, W. Su, B. Sun, X. Yi, T. Zheng, X. Meng
    Materials Letters 371 (2023) 136948
  • Recent Advances on Additive Manufactured Shape Memory Alloys
    Y. Yang, W. Gao*, Bin Sun, Y. Fu, X. Meng
    Transactions of Nonferrous Metals Society of China 34 (7) (2023) 2045-2073
  • Understanding the anomalously low thermal properties of Zr₃Ni₃₋ₓCoₓSb₄ thermoelectric material
    X. Wei, Z. Guo, D. Li, C. Li, B. Sun, Y. Fu, W. Gao, Z. Liu
    Materials Today Physics 44 (2023) 101424
  • Mechanical behavior of high entropy ceramic (TiZrHfVNb)C₅ under extreme conditions: A first-principles density functional theory study
    Zesong Wang, Guotan Liu, Weihong Gao*, Yuxi Yang, Ting Zheng, Zhi-Quan Liu, Peifeng Li, Mufu Yan, Yudong Fu*
    Ceramics International 50 (6) (2023) 9820-9831
  • Enhancing the thermal stability and recoverability of ZrCu-based shape memory alloys via interstitial doping
    Yuxi Yang, Mingqi Deng, Weihong Gao*, Bin Sun, Yudong Fu*, Xianglong Meng
    Materials Science and Engineering: A 889 (2024) 145860
  • Cubic phase stabilization and thermoelectric performance optimization in AgBiSe₂–SnTe system
    Zhentao Guo, Yu-Ke Zhu, Ming Liu, Xingyan Dong, Bin Sun, Fengkai Guo, Qian Zhang, Juan Li, Weihong Gao*, Yudong Fu*, Wei Cai, Jiehe Sui, Zihang Liu*
    Materials Today Physics 38 (2023) 101238
  • Atomic-level insights from density functional theory and ab initio molecular dynamics calculations for oxidation mechanism of transition metal doping Nb₄AlC₃(0001) surface
    Guotan Liu, Weihong Gao*, Guosheng Huang, Danni Zhao, Wenlong Su, Bin Sun, Mufu Yan, Yu-dong Fu
    Ceramics International 49 (2023) 40061-40072
  • Modification mechanism of Ti-6Al-4V alloy with pre-coated Ti-Cu-Al multilayer film treated by ion nitriding: Experiments and first-principles calculations
    Guotan Liu, Enhong Wang, Weihong Gao*, Zhihao Huang, Bin Wei, Yuxi Yang, Mufu Yan, Yu-dong Fu*
    Surfaces and Interfaces 40 (2023) 103004
  • Study on the microscopic mechanism of age-strengthened high damage tolerance Al–Cu–Mg alloys
    Guotan Liu, Weihong Gao*, Guosheng Huang*, Keqiang Sun, Bin Sun, Jinlai Fu, Ting Li, Fuguan Cong, Yudong Fu*
    Vacuum 216 (2023) 112442

Conclusion:

Given Weihong Gao’s substantial publication record, international collaborations, and innovative contributions to the fields of shape memory alloys and thermoelectric materials, She is an outstanding candidate for the Best Researcher Award. Her work not only advances theoretical understanding but also offers real-world applications that could significantly impact technology and industry.