Rohit Yadav | High energy physics | Best Researcher Award

Mr. Rohit Yadav | High energy physics | Best Researcher Award

National Institute of Technology Warangal | India

Rohit Yadav is a Research Scholar at the National Institute of Technology (NIT), Warangal, India, specializing in hybrid supercapacitors and electrode materials for energy storage systems. His research focuses on designing and developing high-performance, eco-friendly supercapacitors aimed at advancing electric vehicles (EVs) and promoting green energy solutions. Rohit’s work is essential for the sustainable energy revolution and has already contributed significantly to renewable energy storage and smart grid applications.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Rohit completed his M.Sc. in Physics in 2020 from the Malviya National Institute of Technology, Jaipur, India. His dissertation focused on studying cathode materials for metal-air batteries, laying a strong foundation for his later work in advanced energy storage systems. His academic journey provided a deep understanding of material science and electrochemical processes, which continues to shape his innovative approach to supercapacitor research.

Professional Endeavors 🔬

As a Program Committee Member for the IEMDST 2024 Conference, Rohit played a crucial role in organizing and overseeing a global scientific event. Additionally, he served as the General Secretary of the Physics Society at NIT Warangal in 2023, organizing scientific talks and coordinating weekly research presentations. His leadership and collaboration in these roles underscore his commitment to fostering scientific dialogue and promoting academic growth in the scientific community.

Contributions and Research Focus 🔍

Rohit’s research interests span across the development of hybrid supercapacitors, focusing on the synthesis and characterization of novel electrode materials. His work directly impacts the advancement of energy storage systems for electric vehicles and renewable energy solutions. By enhancing the performance of supercapacitors with eco-friendly materials like mesoporous strontium titanate and activated carbon derived from natural biomass, he contributes to sustainable, efficient energy storage solutions. His dedication to green energy applications marks a crucial intersection of technology and environmental impact.

Research Skills 🛠️

Rohit is highly skilled in synthesis techniques such as sol-gel and hydrothermal methods for creating novel electrode materials. His expertise includes electrochemical characterization, materials optimization, and nanomaterial design, which are key in developing high-performance energy storage systems. Additionally, he is proficient in advanced analytical techniques, ensuring that his materials meet the rigorous demands of sustainable energy solutions.

Awards and Honors 🏆

Rohit’s dedication and hard work have been recognized through several accolades:

  • Best Paper Award – 2023: For his exceptional paper presented at an international conference.
  • Position Certificate in Mini Marathon – 2024: A testament to his balanced and disciplined approach to both academic and personal growth.

These honors highlight his outstanding contributions to the field of energy storage and his commitment to excellence in both academic and extracurricular endeavors.

Legacy and Future Contributions 🚀

Rohit’s long-term vision is to push the boundaries of hybrid supercapacitor technology and advanced electrode materials to further enhance energy storage systems for electric vehicles and renewable energy grids. His work is poised to play a crucial role in the global transition to sustainable energy solutions, and he aspires to continue contributing to green technologies that benefit both society and the environment.

Publications Top Notes

Synthesis and Electrochemical characterization of activated porous Carbon Derived from Walnut shells as an Electrode material for symmetric Supercapacitor Application

  • Authors: R Yadav, N Macherla, K Singh, K Kumari
    Journal: Engineering Proceedings 59 (1), 175
    Year: 2024

Structural-Morphological Insights into Optimization of Hydrothermally Synthesized MoSe2 Nanoflowers for Improving Supercapacitor Application

  • Authors: P Yadav, R Yadav, J Pani, RM Singh, D Singh, K Kusum, H Borkar, …
    Journal: Dalton Transactions
    Year: 2025

Temperature-dependent hydrothermal processing of WS2 nanorods with controlled growth morphology, crystallography and optical properties

  • Authors: DS Ahlawat, D Singh, R Yadav, K Kumari, H Borkar, J Gangwar
    Journal: Materials Letters 377, 137386
    Year: 2024

Electrochemical analysis of sol-gel and hydrothermal synthesized mesoporous strontium titanate spherical nanoparticles as electrode material for high-performance flexible supercapacitors

  • Authors: R Yadav, R Banoth, K Singh, H Borkar, K Kumari
    Journal: Materials Chemistry and Physics 328, 130004
    Year: 2024

Novel industrial biomass derived materials for super capacitor application in powering up electronic gadgets

  • Authors: P Yadav, PA Azeem, S Patel, G Mahar, R Yadav, H Borkar
    Journal: Journal of Energy Storage 97, 112653
    Year: 2024

 

 

Luchun Du | Theoretical Advances | Best Researcher Award

Assoc. Prof. Dr. Luchun Du | Theoretical Advances | Best Researcher Award

Yunnan University | China

Dr. Luchun Du is a distinguished academic in the field of Theoretical Physics, specializing in Statistical Physics and Nonlinear Dynamics. He has held positions as an Assistant Professor and Associate Professor at the Department of Physics, Yunnan University since 2012. His research contributions have earned him recognition both nationally and internationally, especially in areas like vibrational resonance, anomalous transport behaviors, and active particles dynamics.

👨‍🎓 Profile

Google scholar

Scopus

Orcid

📚 Early Academic Pursuits

Dr. Luchun Du’s academic journey began at Yunnan University, where he earned his BSc in Physics (2002-2006), followed by an MSc in Theoretical Physics (2006-2009), and culminated in his PhD in Theoretical Physics (2009-2012). During his doctoral studies, he focused on stochastic resonance and bistable systems, which laid the foundation for his later research on nonlinear dynamics and statistical mechanics.

🔬 Professional Endeavors

Since 2012, Luchun Du has held faculty positions at Yunnan University, where he teaches and conducts research. He has been involved in significant projects funded by the National Natural Science Foundation of China, notably on entropic vibrational resonance (2016-2018) and anomalous transport behaviors in vibrational motors (2013-2015). Additionally, his Visiting Scholar experience at Tongji University (2019-2020) provided valuable international exposure and collaboration opportunities.

🧠 Contributions and Research Focus

Dr. Luchun Du’s research focuses primarily on statistical physics and nonlinear dynamics, with key contributions in the areas of vibrational resonance, anomalous diffusion, and ergodicity breaking. His work explores phenomena like self-propelled particles, active matter, and topological effects in diffusion, pushing the boundaries of complex systems and non-equilibrium statistical mechanics. His investigations into active particles and spatiotemporal disorder have led to groundbreaking insights into non-ergodic diffusion and superdiffusion.

🛠️ Research Skills

Dr. Luchun Du is proficient in theoretical modeling, numerical simulations, and experimental design. His research employs statistical methods, nonlinear analysis, and computational techniques to model complex systems. His expertise in dynamical systems theory, stochastic processes, and complex network dynamics positions him as a leader in the study of non-equilibrium phenomena.

👨‍🏫 Teaching Experience

As an academic at Yunnan University, Luchun Du has taught courses on statistical mechanics, nonlinear dynamics, and theoretical physics. His teaching is known for its clarity and the integration of cutting-edge research into the curriculum, inspiring students to pursue research in complex systems and theoretical physics.

🏅 Awards and Honors

Dr. Luchun Du has received several prestigious awards recognizing his scientific achievements, including:

  • First Prize of Science and Technology Award from the Yunnan Provincial Government
  • Certificate of Outstanding Contribution in Reviewing from the Editorial Board of Physica A
  • Outstanding Doctorate Dissertation from the Academic Board of Yunnan Province

These awards reflect his excellence in research, peer review, and contributions to the academic community.

🌱 Legacy and Future Contributions

Dr. Luchun Du’s work has significantly advanced the understanding of nonequilibrium statistical mechanics and complex systems, making him a key figure in the global physics community. Looking forward, he aims to further explore active matter systems, anomalous transport, and spatiotemporal dynamics. His continued research will likely have a lasting impact on the development of theoretical models and applications in diverse fields such as material science, biophysics, and environmental systems.

  Publications Top Notes

A chiral active particle on two-dimensional random landscapes: ergodic uncertain diffusion and non-ergodic subdiffusion

  • Authors: Hongda Shi, Xiongbiao Zhao, Wei Guo, Jun Fang, Luchun Du
    Journal: Nonlinear Dynamics
    Year: 2024

Collective motion with the self-propelled directional reversals effect

  • Authors: C. Wang, C.R. Li, W. Guo, L.C. Du
    Journal: Chaos, Solitons & Fractals
    Year: 2024

Bounded diffusing diffusivities: Brownian yet non-Gaussian diffusion

  • Authors: Chengrong Luo, Luchun Du, Zixuan Guo, Hongda Shi, Feijie Huang, Youlin Xiang, Wei Guo
    Journal: Physica Scripta
    Year: 2024

Brownian particles in a periodic potential corrugated by disorder: Anomalous diffusion and ergodicity breaking

  • Authors: Wei Guo, Ying-Zhou Liu, Fei-Jie Huang, Hong-Da Shi, Lu-Chun Du
    Journal: Chaos, Solitons & Fractals
    Year: 2023

Vibrational resonance in globally coupled bistable systems under the noise background

  • Authors: Jiangling Liu, Chaorun Li, Hailing Gao, Luchun Du
    Journal: Chinese Physics B
    Year: 2023

 

 

 

Mahdieh Ghaseminejad | High energy physics | Editorial board member

Dr. Mahdieh Ghaseminejad | High energy physics | Editorial board member

Yazd University | Iran

Dr. Mahdieh Ghasemi Nejad is a flexible and experienced researcher with a strong background in industrial, experimental, and theoretical sciences. She has specialized expertise in micro and nanomaterials, polymers, and nuclear physics. As an academic researcher and university lecturer, she combines her profound knowledge with practical experience in product design and development. Dr. Ghasemi Nejad is a strong communicator, proficient in teamwork, and excels at taking on new challenges and initiatives.

👨‍🎓 Profile

🎓 Early Academic Pursuits

Dr. Ghasemi Nejad embarked on her academic journey with a Bachelor’s degree in Solid State Physics from Kerman University (2005-2009), where she excelled in her studies. She then pursued a Master’s degree in Nuclear Physics at Payam Noor University in Mashhad (2009-2011). Her academic career culminated with a Ph.D. in Nuclear Physics from Yazd University (2017-2021), where she furthered her expertise in the interdisciplinary fields of nuclear and material sciences.

🔬 Professional Endeavors

Currently, Dr. Ghasemi Nejad serves as the Managing Director of Gita Baspar Co. in Yazd, where she is involved in consulting and cooperation on polymer production and product design. Alongside this, she has had an extensive career as a university lecturer at both Azad University and Payam Noor University, contributing to higher education and mentoring young researchers. Dr. Ghasemi Nejad also held the position of Head of Design and Development Unit at Nano Sanjesh Yaran Mohit Co., where she was responsible for product innovation and supervising production processes from 2017 to 2022.

🔬 Contributions and Research Focus

Dr. Ghasemi Nejad’s research revolves around micro and nanomaterials, polymers, and nuclear physics, with a particular focus on the shielding properties of materials against radiation and antibacterial applications. Some of her key research topics include:

  • X-ray attenuation properties of composite materials such as PbO and graphene.
  • The shielding performance of materials like EPVC (lead-free) and high-Z oxide fibers.
  • Investigating the antibacterial properties of polymeric composites containing nanoparticles such as Molybdenum Trioxide.
  • Monte Carlo simulations for radon measurement in water and X-ray attenuation models.

Her work is instrumental in both theoretical and applied aspects of material science, particularly in radiation protection and nanotechnology.

🌍 Impact and Influence

Dr. Ghasemi Nejad has significantly contributed to the fields of nuclear physics, polymer science, and nanomaterials. Her publications and conference papers have made her a recognized figure in the scientific community, particularly in radiation shielding and nanomaterial applications. Her research is highly influential in both academic circles and industrial sectors, where her work in polymer production and product design is shaping innovative solutions for radiation protection and nanocomposites.

💻 Computer Skills

  • Microsoft Office Suite (Word, Excel, PowerPoint)
  • MCNP and GEANT4 for nuclear simulations
  • MATLAB for data analysis
  • Origin Pro for scientific plotting
  • ChemDraw and OPUS for chemical structure drawing
  • Prezi and Image J for presentations and image processing

Her diverse computer skills ensure effective data analysis, modeling, and presentation in both academic and industrial contexts.

🏆 Awards and Honors

Dr. Ghasemi Nejad has been recognized for her scientific achievements throughout her career, including:

  • First place in the Ninth Scientific Festival of Students (Scientific Olympiad in Physics), 2009.
  • Ranked first among undergraduate students at Kerman University in 2009.
  • Patent Declaration for an X-ray protective polymer layer in 2020.

These recognitions emphasize her commitment to scientific excellence and innovation.

Top Noted Publications

  • The effect of modified Tin oxide on X-ray attenuation: An experimental and theoretical study
    Authors: Ghasemi-Nejad, M., Gholamzadeh, L., Adeli, R., Shirmardi, S.P.
    Journal: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
    Year: 2024
  • Investigation of Antibacterial Activity of Synthesized PVC Composites Containing Molybdenum Trioxide Nano Particles
    Authors: Ghasemi-Nejad, M., Gholamzadeh, L., Adeli, R., Shirmardi, S.P.
    Journal: Journal of Surface Investigation
    Year: 2023
  • A comprehensive study of the antibacterial and shielding properties of micro and nano-EPVC lead-free shields
    Authors: Ghasemi-Nejad, M., Gholamzadeh, L., Adeli, R., Shirmardi, S.P.
    Journal: Physica Scripta
    Year: 2022
  • A study of the shielding performance of fibers coated with high-Z oxides against ionizing radiations
    Authors: Gholamzadeh, L., Asari-Shik, N., Aminian, M.K., Ghasemi-Nejad, M.
    Journal: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    Year: 2020

 

Sergei Roshchupkin | Interactions and fields | Best Researcher Award

Prof Dr. Sergei Roshchupkin | Interactions and fields | Best Researcher Award 

Professor at Peter the Great St.Petersburg Polytechnic University (SPbPU), Russia

Sergei Pavlovich Roshchupkin, born on June 3, 1953, in Konotop, Sumy region, USSR, is a prominent physicist currently serving as a Professor at the Higher School of Fundamental Physical Research at Peter the Great St. Petersburg Polytechnic University. With a career spanning several decades, he has made significant contributions to the field of physics, particularly in quantum electrodynamics. Roshchupkin’s academic journey has been marked by his commitment to both research and education, influencing generations of students through his teaching. He is known for his collaborative spirit and dedication to advancing fundamental physical research.

Profile:

Education:

Roshchupkin graduated from the Moscow Engineering Physics Institute (National Research Nuclear University) in 1977, earning his degree in Experimental and Theoretical Physics. He obtained his PhD in September 1983, focusing on the bremsstrahlung of electrons in strong electromagnetic fields. In January 1995, he achieved the degree of Doctor of Sciences in Physics and Mathematics, exploring stimulated emission and spontaneous bremsstrahlung at relativistic electron collisions. His extensive educational background forms a solid foundation for his distinguished career in theoretical and experimental physics.

Professional Experience:

Roshchupkin’s professional journey began as an engineer at the Russian Federal Nuclear Center, where he worked from 1977 to 1980. He then pursued postgraduate studies before holding various academic roles, including Research Assistant and Associate Professor at Sumy State University. Between 1992 and 2012, he served as a Senior Research Worker and Head of multiple departments at the Institute of Applied Physics, NASU. In 2015, he became a professor at Peter the Great St. Petersburg Polytechnic University, where he continues to teach and lead research initiatives in theoretical physics, demonstrating a consistent commitment to advancing scientific understanding.

Research focus:

Roshchupkin’s research primarily concentrates on quantum electrodynamics in strong electromagnetic fields, encompassing a range of topics such as non-linear quantum optics and the interaction of laser radiation with leptons and ions. He investigates the amplification of laser radiation through quantum electrodynamic processes in intense fields and explores phenomena occurring in strong X-ray fields near pulsars and magnetars. His work is at the forefront of modern physics, contributing valuable insights into the behavior of matter and radiation under extreme conditions, and advancing the understanding of fundamental interactions in nature.

Awards and Honors:

In recognition of his outstanding contributions to the field of physics, Roshchupkin was honored as a Distinguished Scientist of Ukraine in May 2011. This accolade reflects his impactful research, dedication to education, and influence within the scientific community. His work has garnered respect and recognition, not only in Ukraine but internationally, positioning him as a key figure in quantum electrodynamics and related fields. Roshchupkin’s achievements exemplify his commitment to advancing knowledge and fostering innovation in physics.

Publication Top Notes:

  • Title: Resonant effects in collisions of relativistic electrons in the field of a light wave
    Authors: SP Roshchupkin
    Year: 1996
    Citations: 140 📄
  • Title: Quantum electrodynamics resonances in a pulsed laser field
    Authors: SP Roshchupkin, AA Lebed’, EA Padusenko, AI Voroshilo
    Year: 2012
    Citations: 100 📄
  • Title: Resonant spontaneous bremsstrahlung by an electron scattered by a nucleus in the field of a pulsed light wave
    Authors: AA Lebed’, SP Roshchupkin
    Year: 2010
    Citations: 80 📄
  • Title: Resonant and coherent effects of quantum electrodynamics in the light field
    Authors: SP Roshchupkin, AI Voroshilo
    Year: 2008
    Citations: 80 📄
  • Title: Effects of quantum electrodynamics in the strong pulsed laser fields
    Authors: SP Roshchupkin, AA Lebed
    Year: 2013
    Citations: 58 📄
  • Title: Nonresonant quantum electrodynamics processes in a pulsed laser field
    Authors: SP Roshchupkin, AA Lebed’, EA Padusenko
    Year: 2012
    Citations: 57 📄
  • Title: Resonant scattering of a photon by an electron in the field of a circularly polarized electromagnetic wave
    Authors: AI Voroshilo, SP Roshchupkin
    Year: 2005
    Citations: 52 📄
  • Title: Resonant scattering of an electron by a positron in the field of a light wave
    Authors: OI Denisenko, SP Roshchupkin
    Year: 1999
    Citations: 46 📄