Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Mrs. Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Research Scholar at National Institute of Technology Warangal | India

Ramadevi Suguru Pathinti is currently pursuing her Ph.D. in Physics at the National Institute of Technology, Warangal, India, specializing in Materials Science with a focus on soft matter research. Her academic journey spans from her M.Sc. in Physics to her ongoing doctoral studies. Ramadevi has made significant contributions in the field of nanomaterials and smart materials, particularly in integrating liquid crystals with metal oxides for the development of advanced gas sensors and UV photodetectors.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Ramadevi’s academic journey began at Rayalaseema University, Kurnool, India, where she pursued her M.Sc. in Physics with a specialization in Electronics, securing a CGPA of 9.1/10. She also holds a B.Sc. in Mathematics, Physics, and Computer Science. Her strong academic foundation laid the groundwork for her pioneering research in Materials Science during her doctoral studies at NIT, Warangal.

Professional Endeavors 💼

In her professional journey, Ramadevi has excelled in scientific research within both academic and industrial contexts. She has contributed to the development of thin film devices for smart window technologies, gas sensors, and photodetectors. Her Ph.D. research focuses on integrating liquid crystal-functionalized metal oxides to enhance the optical properties and responsivity of sensors, enabling advancements in environmental sensing and optoelectronic devices.

Contributions and Research Focus 🔬

Ramadevi’s research is centered on the synthesis of nanomaterials and their integration into innovative smart materials. She has worked extensively on fabricating gas sensors and UV photodetectors using liquid crystal-metal oxide hybrids. Notably, her work on smart windows is groundbreaking, where she has discovered novel optical switching behaviors and light modulation techniques, paving the way for energy-saving technologies. Furthermore, her synthesis methods like sol-gel and hydrothermal techniques have contributed to enhanced material properties for sensing applications.

Impact and Influence 🌍

Her research has already made a considerable impact in the fields of environmental sensing and smart material development, particularly in the energy-efficient technologies sector. Ramadevi’s work has the potential to revolutionize how we detect gases, modulate light, and develop self-powered sensors, with applications ranging from smart windows to sensitive environmental monitoring systems. Through her research, she aims to bring forth sustainable technologies that are adaptable to changing global needs.

Academic Cites 📚

Ramadevi has authored several impactful publications in top-tier peer-reviewed journals, contributing to the fields of materials science and optoelectronics. Her articles in journals like the Journal of Molecular Liquids, Journal of Alloys and Compounds, and Advanced Material Technology have contributed to the scientific community’s understanding of the integration of nanomaterials and liquid crystals for innovative devices. She has also presented her research at national and international conferences, further strengthening her academic profile.

Research Skills 🛠

Ramadevi has developed extensive technical expertise in nanomaterial synthesis using methods like sol-gel and hydrothermal techniques. She is proficient in device fabrication, particularly thin film devices for gas sensing and UV photodetector applications. Additionally, she has hands-on experience with advanced research instruments, including optical polarizing microscopes, fluorescence microscopes, and spin coating systems, which enhance her ability to conduct high-quality research and device development.

Teaching Experience 📚

In addition to her research, Ramadevi has taught practical sessions for both M.Sc. (Tech) Physics and B.Tech students. She has handled laboratory work, where she imparted valuable knowledge on experimental techniques and device characterization to budding scientists. This experience has helped her develop strong interpersonal and communication skills, which are essential for future academic and industrial collaborations.

Awards and Honors 🏆

Ramadevi’s excellence has been acknowledged through the Joint CSIR-UGC National Eligibility Test (NET) for Junior Research Fellowship (JRF) in 2017, where she secured an impressive All India Rank of 57. This achievement is a testament to her academic aptitude and research potential.

Legacy and Future Contributions 🌟

Looking forward, Ramadevi aims to make lasting contributions to the field of materials science and nanotechnology. Her research is poised to drive innovations in smart materials, sustainable technologies, and energy-efficient devices, with far-reaching implications for environmental sensing, smart window technologies, and optoelectronics. With her interdisciplinary approach and collaborative nature, she is well-positioned to make significant advancements in both academic and industrial research.

Publications Top Notes

Label-free detection of Aβ-42: a liquid crystal droplet approach for Alzheimer’s disease diagnosis

  • Authors: Saumya Ranjan Pradhan, Ramadevi Suguru Pathinti, Ramesh Kandimalla, Krishnakanth Chithari, Madhava Rao Veeramalla N., Jayalakshmi Vallamkondu
    Journal: RSC Advances
    Year: 2024

Enhanced ethanol gas detection using TiO2 nanorods dispersed in cholesteric liquid crystal: Synthesis, characterization, and sensing performance

  • Authors: Ramadevi Suguru Pathinti, Sunil Gavaskar Dasari, Buchaiah Gollapelli, Sreedevi Gogula, Ramana Reddy M.V., Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2024

Enhanced security through dye-doped cholesteric liquid crystal shells for anti-counterfeiting

  • Authors: Chris Mathew, Ramadevi Suguru Pathinti, Saumya Ranjan Pradhan, Buchaiah Gollapelli, Krishnakanth Chithari, Mrittika Ghosh, Ashok Nandam, Jayalakshmi Vallamkondu
    Journal: Optical Materials
    Year: 2024

ZnO nanoparticles dispersed cholesteric liquid crystal based smart window for energy saving application

  • Authors: Ramadevi Suguru Pathinti, Arun Kumar Tatipamula, Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2023

Energy saving, transparency changing thermochromism in dye-doped cholesteric liquid crystals for smart windows

  • Authors: Ramadevi Suguru Pathinti, Buchaiah Gollapelli, Saumya Ranjan Pradhan, Jayalakshmi Vallamkondu
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2023

 

Chadha Henchiri | Experimental methods | Member

Dr. Chadha Henchiri | Experimental methods | Member

PHD at University of Sfax, Tunisia

Chadha Henchiri, a Tunisian physicist born on September 19, 1993, specializes in Materials Science with a keen interest in Magnetism and Dielectrics. She obtained her doctoral thesis from the University of Sfax under the supervision of Pr. E. Dhahri. With a solid foundation in physics from the University of Gafsa, Chadha has showcased her expertise through publications in esteemed journals and active participation in scientific events. She possesses a diverse skill set in synthesis methodologies, experimental design, and data analysis. Currently serving as an Assistant Teacher at the Preparatory Institute for Engineering Studies of Gafsa, Chadha continues to contribute significantly to her field.

Professional Profiles:

Education

Doctoral Thesis: Physics – Material physics University: University of Sfax Supervisor: Pr. E. Dhahri Research Master’s Degree: Physics – Materials Physics and Energy Management University: University of Gafsa Supervisor: Pr. E. Dhahri Fundamental License: Physics University: University of Gafsa

Professional Experiences

Chadha Henchiri has served as a temporary assistant at the Faculty of Science of Gafsa and currently holds the position of Assistant Teacher at the Preparatory Institute for Engineering Studies of Gafsa.

Research Experiences / Skills

Chadha Henchiri possesses expertise in various synthesis methodologies, experimental designs, instrument handling, and characterization techniques, including crystal structure analysis, surface morphology examination, thermal analysis, and magnetic property analysis. She is proficient in several research packages and software for data analysis and interpretation.

Area of Research Interests

Chadha Henchiri’s primary interest lies in Materials Science, with a focus on Magnetism, Dielectrics, and the modulation of magnetic properties using MATLAB software. She is enthusiastic about engaging in challenging fields of physics and delivering her best efforts.

Research Focus:

Chadha Henchiri’s research focuses primarily on the structural and magnetic properties of various materials, particularly manganites and spinel ferrites. Her work delves into understanding the intricate relationships between structural characteristics and magnetic behavior, with a particular emphasis on magnetocaloric effects at room temperature. Through theoretical studies and experimental investigations, Chadha has contributed significantly to the understanding of magnetocaloric phenomena in lanthanum manganite lacunar compounds and CoFeCuO4 spinel ferrite nanoparticles. Her research not only advances the fundamental understanding of these materials but also holds promise for potential applications in areas such as energy conversion and magnetic refrigeration.

Publications 

  1. Structural, dielectric, electrical and modulus spectroscopic characteristics of CoFeCuO4 spinel ferrite nanoparticles, cited by: 31, Publication date: 2021.
  2. Structural and magnetic properties of La1-xxMnO3 (x = 0.1; 0.2 and 0.3) manganites, cited by: 18, Publication date: 2019.
  3. Structural study and large magnetocaloric entropy change at room temperature of La 1− x□ x MnO 3 compounds, cited by: 14, Publication date: 2020.
  4. Theoretical study of the magnetic properties and the magnetocaloric effect in lanthanum manganite lacunar compounds, cited by: 8, Publication date: 2022.
  5. Study of structural properties and conduction mechanisms of La0. 67Ca0. 2Ba0. 13Fe0. 97Ti0. 03O3 perovskite, cited by: 6, Publication date: 2022.
  6. Study of structural, magnetic, magnetocaloric properties and critical behavior of CoFeCuO4 spinel ferrite, cited by: 6, Publication date: 2021.
  7. Landau mean-field analysis and estimation of the spontaneous magnetization from magnetic entropy change, cited by: 5, Publication date: 2021.
  8. Modeling the Magnetocaloric Effect of La0.8MnO3 by the Mean-Field Theorycited by: 4, Publication date: 2020.
  9. Theoretical study of magnetic and magnetocaloric properties and MCE modeling by the mean-field theory in CoFeCuO4 spinel ferrite, cited by: 2, Publication date: 2022.
  10. Correlation between electronic and magnetic properties of LaMnO 3-δ: experimental study and DFT-MBJ calculationPublication date: 2024.

 

 

.