Bhakti Pada Das | Experimental methods | Best Researcher Award

Dr. Bhakti Pada Das | Experimental methods | Best Researcher Award

Ex-Student, Indian Institute of Technology, Kharagpur | India

Dr. Bhakti Pada Das is a distinguished physicist with expertise in the structural, dielectric, electrical, and magnetic properties of various materials. He completed his B.Sc. (Honours) in Physics from Calcutta University in 1981, followed by his M.Sc. in Physics from IIT Kharagpur in 1984. He earned his Ph.D. in Physics from Vidyasagar University, Midnapore in 2006. With over three decades of academic and research experience, Dr. Das has made significant contributions to material science, particularly in ferroelectric systems and nanotechnology.

๐Ÿ‘จโ€๐ŸŽ“Profile

Scopus

ORCID

Early Academic Pursuits ๐ŸŽ“

Dr. Das began his academic journey at Calcutta University, where he obtained his B.Sc. in Physics (Honours), followed by an advanced M.Sc. from IIT Kharagpur, India. His academic interests during this time laid the foundation for his doctoral work. He pursued his Ph.D. research at Vidyasagar University, which focused on the structural, dielectric, and electrical properties of rare-earth-modified Pb(SnTi)O3 ferroelectric systems. This research work set the stage for his later contributions in material science.

Professional Endeavors ๐Ÿ”ฌ

Dr. Das has worked on various significant research projects throughout his career. His expertise spans areas such as dilute magnetic semiconductors, nanofluid technology, and satellite communication. Notably, his work in Ka band propagation experiments at the Indian Institute of Technology, Kharagpur, aimed at improving satellite communication in tropical regions, showcased his innovative approach to solving real-world problems. Additionally, his hands-on experience with the development of NdFeB-based magnets further highlights his comprehensive skill set in experimental physics.

Contributions and Research Focus ๐Ÿง 

Dr. Dasโ€™s research focus includes the study of ferroelectric materials, dilute magnetic semiconductors (DMS), magnetic nanofluids, and the thermal properties of materials. His research on Pb(SnTi)O3 ceramics, In2O3-based DMS, and Sm-Co nanoparticles offers in-depth insights into the electrical and magnetic properties of these materials, crucial for modern electronics and nanotechnology. His work on the thermal conductivity of magnetic nanofluids has also led to advancements in the field of heat transfer and energy efficiency.

Impact and Influence ๐ŸŒ

Dr. Dasโ€™s work has had a significant impact on the fields of material science and nanotechnology. His publications in high-impact journals like Materials Science and Engineering: B, Journal of Electronic Materials, and Journal of Thermal Analysis and Calorimetry have influenced future research in ferroelectric materials, magnetic semiconductors, and thermal management systems. His innovative research techniques and contributions are being widely cited, contributing to the growth of nanotechnology and its real-world applications.

Academic Citations ๐Ÿ“–

Dr. Bhakti Pada Das has been widely cited in academic literature, particularly in the fields of ferroelectric materials and nanomaterials. With a diverse publication record, his research has garnered attention in leading scientific journals, making him a recognized scholar in material science. His most recent work on Fe-doped In2O3 nanoparticles in Materials Science and Engineering: B is one of his most cited articles, reflecting his influence in advancing knowledge in the domain of magnetic semiconductors.

Research Skills ๐Ÿ› ๏ธ

Dr. Das possesses a vast skill set in material preparation techniques, such as solid-state reaction methods, sol-gel processes, and arc melting & melt spinning for alloy preparation. His expertise in structural analysis using XRD (X-ray diffraction) and SEM (Scanning Electron Microscopy) enables him to conduct high-level material characterization. Additionally, he is proficient in magnetic and electrical property studies, particularly for dilute magnetic semiconductors and ferroelectric ceramics.

Teaching Experience ๐Ÿ‘จโ€๐Ÿซ

As an academic mentor, Dr. Das has taught a wide range of undergraduate and postgraduate courses in physics, particularly in materials science. His experience in guiding students through complex experimental setups and theoretical concepts makes him an outstanding educator. His ability to translate his advanced research knowledge into accessible teachings has inspired many future scientists and researchers.

Legacy and Future Contributions ๐ŸŒฑ

Dr. Das’s legacy lies in his dedication to advancing knowledge in the field of material science. He is expected to continue contributing to the study of novel materials, particularly in nanotechnology and energy-efficient systems. His future research may focus on emerging fields like quantum materials and nanoelectronics, areas where his experience in dilute magnetic semiconductors and ferroelectric materials can be applied to push the boundaries of modern technology. Dr. Dasโ€™s continued work will undoubtedly impact both academic research and real-world applications, contributing to the development of sustainable technologies and cutting-edge materials that can shape the future of electronics, communication, and energy systems.

Publications Top Notes

Structural, magnetic and optical characterization of 5 atomic % Fe doped In2O3 dilute magnetic semiconducting nanoparticles

  • Authors: Bhakti Pada Das, Tapan Kumar Nath, Sourav Mandal, Ashes Shit, Palash Nandi, Subhasis Shit, Bishnu Chakraborty, Panchanan Pramanik
    Journal: Materials Science and Engineering: B
    Year: 2025

Magnetic and Optical Properties of Dilute Magnetic Semiconducting (In0.9Mn0.1)2O3 Nanoparticles

  • Authors: Bhakti Pada Das, Tapan Kumar Nath, Sourav Mandal, Ashes Shit, Bishnu Chakraborty, Subhasis Shit, Sananda Das, Palash Nandi, Panchanan Pramanik
    Journal: Journal of Electronic Materials
    Year: 2023

Structural, Microstructural, and Electrical Properties Study of Pb(Sn0.45Ti0.55)O3 Ceramics

  • Authors: Bhakti Pada Das, Bhabani Sankar Patnaik, Tanmaya Jena, Sailabhama Nayak, Geetanjali Nayak, Krishnamayee Bhoi, Uttam Sahu, Prasanta Kumar Mahapatra, Ram Naresh Prasad Choudhary, Subrata Karmakar, Hari Sankar Mohanty
    Journal: ECS Journal of Solid State Science and Technology
    Year: 2024

Room temperature ferromagnetism in chemically synthesized dilute magnetic semiconducting (In0.95Mn0.05)2O3 nanoparticles

  • Authors: Bhakti Pada Das, Akash Oraon, Tapan Kumar Nath, Tapasendra Adhikary, Shampa Aich, Panchanan Pramanik
    Journal: Journal of Materials Science: Materials in Electronics
    Year: 2020

Impact of magnetic field on the thermal properties of chemically synthesized Sm-Co nanoparticles based silicone oil nanofluids

  • Authors: Akash Oraon, Bhakti Pada Das, Monisha Michael, Tapasendra Adhikary, Purbarun Dhar, Shampa Aich, Sudipto Ghosh
    Journal: Journal of Thermal Analysis and Calorimetry
    Year: 2021