Hedi Fitouri | Materials science | Best Paper Award

Prof. Hedi Fitouri | Materials science | Best Paper Award

PHD at the University of Tunis El Manar, Tunisia

Hédi Fitouri received the Ph.D. degree in physics from the University of Tunis El Manar, Tunisia, in 2009 and the D.Sc. (Habilitation) degree in physics from the University of Monastir in 2016. He has a Professor with the Faculty of Sciences of Monastir and leads the III-As materials for telecommunications and energy Team, a Research Group part of the Research Laboratory for Hetero-Epitaxy and Applications, 5019 Monastir, Tunisia. His research interests include atmospheric pressure metalorganic vapor phase epitaxy of novel optoelectronic III-V compounds, development of low dimensional III-V semiconductor structures, and high-efficiency solar cells.

Professional Profiles

Education

Ph.D. in Physics (2009) University of Tunis El Manar, Tunisia D.Sc. (Habilitation) in Physics (2016) University of Monastir, Tunisia

Professional Experience

Professor Faculty of Sciences of Monastir, Tunisia

Research Interests

Atmospheric pressure metalorganic vapor phase epitaxy of novel optoelectronic III-V compounds Development of low-dimensional III-V semiconductor structures High-efficiency solar cells

Research Focus

Hédi Fitouri’s research focuses on the metalorganic vapor phase epitaxy (MOVPE) of III-V semiconductor alloys. His work includes optimizing the growth conditions for GaAsBi alloys, studying their structural, optical, and magnetic properties, and exploring their applications in optoelectronics and solar cells. Fitouri’s studies encompass photoreflectance, photoluminescence, and X-ray diffraction techniques to investigate localization effects, annealing effects, and growth mechanisms. He is also involved in researching bismuth-catalyzed growth of nanowires and nanostructures, contributing significantly to the fields of semiconductor materials, nanoengineering, and sustainable energy technologies.

Publications

  1. MOVPE growth and characterization of GaAs/GaAsBi/GaAs pin structure, Publication date: 2024.
  2. Thermal annealing effects on the physical properties of GaAsBi/GaAs/GaAs:Si structure, Publication date: 2023.
  3. Thermal processes contributions to the temperature dependence of the energy gap in dilute bismuth III-V alloysPublication date: 2022.
  4. Influence of the Substrate Material on the Structure and Morphological Properties of Bi Films,  Publication date: 2022.
  5. A systematic methodology for the analysis of multicomponent photoreflectance spectra applied to GaAsBi/GaAs structure, Publication date: 2020.
  6. In situ monitoring of InAsBi alloy grown under alternated bismuth flows by metalorganic vapor phase epitaxyPublication date: 2019.
  7. Temperature dependence on the morphological evolution of dilute InAsBi/GaAs nanostructures grown by metalorganic vapor phase epitaxyPublication date: 2017.
  8. MOVPE growth of InAsBi/InAs/GaAs heterostructure analyzed by in situ spectral reflectance, Publication date: 2017.
  9. High‐resolution X‐ray diffraction of III–V semiconductor thin films, Publication date: 2017.
  10. Photothermal deflection investigation of thermally oxidized mesoporous silicon, Publication date: 2016.
.

Chuanjie Wang | Materials Processing | Best Researcher Award

Prof. Chuanjie Wang | Materials Processing | Best Researcher Award

Professor at the Harbin Institute of Technology, China

Chuanjie Wang is a professor at the Harbin Institute of Technology at Weihai, where he has been affiliated since 2013. With a Web of Science ResearcherID of AAI-5057-2021 and an ORCiD of 0000-0002-5171-7322, his research focuses on materials processing. He has published 71 papers, garnering an H-index of 15 and 730 citations. Notable publications include studies on titanium thin sheets and nickel-based superalloys. His work is frequently featured in journals such as Materials Science and Engineering: A and Integrated Ferroelectrics. His contributions significantly impact the field of materials science and engineering. Materials Processing

Professional Profiles

Education

Harbin Institute of Technology at Weihai (since 2013)

Professional Role

Professor Department of Materials Processing, Harbin Institute of Technology. Materials Processing

Research Focus

Chuanjie Wang is a professor at the Harbin Institute of Technology at Weihai, specializing in materials processing. His research encompasses micro/nanoforming, deformation behavior, and the mechanical properties of metals, particularly nickel-based superalloys. He has published extensively, with significant works in journals such as Materials & Design and Materials Science and Engineering: A. Wang’s contributions include developing constitutive models, studying frictional behavior in metal forming, and investigating size effects in plastic deformation. His research has garnered an H-index of 15 and 730 citations, reflecting his impact on the field of materials science and engineering. Materials Processing

Publications

  1. Thermal stability of WO3 doped tellurite glass and spectral properties of Er3+/Yb3+ doped tellurium⁃ tungstate glass, Publication date: 2024.
  2. Evolution of fatigue mechanical properties and micro defects in nickel-based single crystal superalloys: A molecular dynamics research, Publication date: 2023.
  3. Experiment and modeling based studies of the mesoscaled deformation and forming limit of Cu/Ni clad foils using a newly developed damage model, Publication date: 2022.
  4. Effect of polycaprolactone impregnation on the properties of calcium silicate scaffolds fabricated by 3D printing, Publication date: 2022.
  5. Microstructures and properties of polycaprolactone/tricalcium phosphate scaffolds containing polyethylene glycol fabricated by 3D printing, Publication date: 2022.
  6. Investigation on forming methods in rubber pad forming process used for fabricating Cu/Ni clad foil microchannel, Publication date: 2022.
  7. Influence of heat treatment on the texture, microstructure and tensile deformation behaviours of cold rolled FeCoNiCr sheets, Publication date: 2022.
  8. Construction and Exploration of Innovative Researching Course” Theory and Technology of Microforming”, Publication date: 2022.
  9. Multi-Dimensional Revealing the Influence Mechanism of the δ Phase on the Tensile Fracture Behavior of a Nickel-Based Superalloy on the Mesoscopic ScalePublication date: 2022.
  10. Anisotropy in mechanical properties during microscale uniaxial tensile deformation of Cu/Ni clad foils, Publication date: 2019.
.