Sudip Kumar Haldar | Quantum Technologies | Best Faculty Award

Dr. Sudip Kumar Haldar | Quantum Technologies | Best Faculty Award

Jaypee Institute of Information Technology | India

Dr. Sudip Kumar Haldar is an accomplished Assistant Professor in the Department of Physics and Material Science & Engineering at Jaypee Institute of Information Technology, Noida. With an extensive academic and research career, Dr. Haldar specializes in Theoretical Condensed Matter Physics, focusing on quantum gases and quantum information theory (QIC). He has contributed significantly to the field, with research spanning multiple prestigious institutions, including a post-doctoral stint at the University of Haifa, Israel, and the Physical Research Laboratory, India. His diverse roles have influenced various subfields of physics, particularly many-body dynamics and quantum technologies.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 📚

Dr. Haldar’s academic journey began with his early education in Kolkata, India, where he excelled in science subjects. He completed his B.Sc. (Hons.) in Physics from Calcutta University in 2006, securing First Class results. He further pursued M.Sc. in Physics from the same institution in 2008, followed by success in prestigious exams like GATE (2009) and the CSIR-JRF (2009). Dr. Haldar’s academic excellence culminated in his Ph.D. from Calcutta University in 2015, where his research focused on the stability of Bose-Einstein condensates in finite optical traps.

Professional Endeavors 🌏

Dr. Haldar has worked in prestigious institutions worldwide. He was a Post-doctoral Research Assistant at the University of Haifa, Israel (2016-2019), where he studied many-body dynamics and excitation spectra in trapped ultra-cold atomic gases. He also worked at the Physical Research Laboratory (ISRO) in Ahmedabad (2014-2016), exploring thermalization dynamics in quantum systems using embedded random matrix theory. In his current position at Jaypee Institute of Information Technology, Dr. Haldar continues to push the frontiers of quantum technologies and quantum information science.

Contributions and Research Focus 🔬

Dr. Haldar’s research interests primarily revolve around Theoretical Condensed Matter Physics and Quantum Information Science (QIC). His work explores the dynamics of quantum gases, the interaction effects in ultracold bosonic systems, and the role of entanglement in quantum phase transitions. He is currently investigating quantum technologies for next-generation quantum computing. His notable publications include a paper on topological quantum phase transitions and significant contributions to the study of bosonic Josephson junctions and finite-range interactions.

Research Skills 🧠

Dr. Haldar possesses an advanced skill set in computational physics, with proficiency in LaTeX, Fortran95, C++, and HPC systems. His research often involves the use of high-performance computing (HPC) to simulate and analyze complex quantum dynamics. He regularly employs advanced computational techniques and methods such as Multiconfigurational Time-Dependent Hartree (MCTDH) for quantum simulations, contributing significantly to his field’s computational modeling advancements.

Teaching Experience 🎓

As an Assistant Professor, Dr. Haldar has taught various courses in Physics and Material Science. He has also been actively involved in conducting workshops and training sessions for students and faculty. Notably, he was a resource person for the One Week Workshop on Scientific & Technical Research Scripting Using LaTeX at SRM University in 2023. His teaching pedagogy emphasizes outcome-based education, incorporating interactive learning to inspire students in the fundamentals of theoretical physics.

Awards and Honors 🏆

Dr. Haldar’s excellence in research and academia has been recognized through various awards and fellowships. He received the CSIR Junior Research Fellowship (2010) based on his performance in the UGC-CSIR NET exam. He has been a Life Member of the Indian Society of Atomic & Molecular Physics (ISAMP). His post-doctoral fellowships include prestigious positions such as the Institute Post-Doctoral Fellowship from the University of Haifa and the BK21 Plus Postdoctoral Fellowship under the Brain Korea 21 Program.

Citations📚

A total of 165 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations –  165
  • h-index   –      8
  • i10-index –     7

Legacy and Future Contributions 🌱

Dr. Haldar’s work continues to inspire students and fellow researchers in the fields of quantum physics and condensed matter theory. His research on quantum dynamics, BECs, and quantum phase transitions has the potential to contribute significantly to the development of quantum computing technologies. With ongoing projects like the DST SERB funded project on quantum technologies, Dr. Haldar is at the forefront of the future of quantum science in India and globally. His legacy will likely be marked by his pivotal role in advancing quantum systems and theoretical physics.

Publications Top Notes

Many-Body Effects in a Composite Bosonic Josephson Junction

  • Authors: Sudip Kumar Haldar, Anal Bhowmik
    Journal: Atoms, 2024

Predicting a Topological Quantum Phase Transition from Dynamics via Multisite Entanglement

  • Authors: Leela Ganesh Chandra Lakkaraju, Sudip Kumar Haldar, Aditi Sen (De)
    Journal: Physical Review A, 2024

Impact of the Transverse Direction on the Many-Body Tunneling Dynamics in a Two-Dimensional Bosonic Josephson Junction

  • Authors: Anal Bhowmik, Sudip Kumar Haldar, Ofir E. Alon
    Journal: Scientific Reports, 2020

Relaxation of Shannon Entropy for Trapped Interacting Bosons with Dipolar Interactions

  • Authors: Sangita Bera, Sudip Kumar Haldar, Barnali Chakrabarti, Andrea Trombettoni, V. K. B. Kota
    Journal: The European Physical Journal D, 2020

Many-Body Quantum Dynamics of an Asymmetric Bosonic Josephson Junction

  • Authors: Sudip Kumar Haldar, Ofir E. Alon
    Journal: New Journal of Physics, 2019

 

 

Aniket Nag | Quantum Technologies | Best Researcher Award

Mr. Aniket Nag | Quantum Technologies | Best Researcher Award

Ph D Scholar at Indian Institute of Technology, Kanpur in India

Aniket Nag is an emerging physicist with a focus on quantum information and atomic-molecular physics. He completed his M.Sc. in Physics from the National Institute of Technology (NIT) Durgapur, achieving a commendable CGPA of 8.94. Aniket’s research interests lie in understanding complex physical phenomena, including the effects of the generalized uncertainty principle. He has actively participated in academic discussions on econophysics and sociophysics and contributed to seminars and science exhibitions. His academic journey reflects both excellence and curiosity, with multiple publications in renowned journals such as the Ukrainian Journal of Physics and Canadian Journal of Physics. With a solid background in computational tools like Fortran and Matlab, Aniket aims to advance his research career while contributing to the broader field of physics.

Profile:

Education:

Aniket Nag completed his M.Sc. in Physics from the National Institute of Technology, Durgapur, West Bengal, in 2022, with a CGPA of 8.94. Prior to that, he obtained his B.Sc. in Physics from Serampore College under the University of Calcutta, graduating in 2020 with 74.37%. During his undergraduate studies, he focused on Physics as his major, with Chemistry and Mathematics as general subjects. He had a strong academic performance during his Higher Secondary (10+2) education at Dainhat High School, securing 87.2% with Physics, Chemistry, Mathematics, and Biological Science as his core subjects. Aniket demonstrated academic excellence from an early age, achieving an impressive 87.75% during his Secondary School (10th) education in 2015. His education laid a strong foundation for his future research interests in quantum information and atomic-molecular physics.

Professional experience:

Aniket Nag’s academic experience extends beyond traditional coursework. In 2019, he participated in a discussion on Econo physics and Socio physics led by Dr. Bikas Kanta Chakrabarti, an Emeritus Professor at Saha Institute of Nuclear Physics (SINP). Additionally, Aniket demonstrated hands-on expertise during the Annual Science Exhibition at Serampore College in 2019, where he successfully created and showcased a Tesla Coil project. His model explained the principles behind wireless power transmission. He also took part in a science show on LIGO and Gravitational Waves organized by the Promote Science team in 2017. Aniket’s academic journey highlights his practical engagement with physics concepts and his passion for exploring innovative solutions. He has also presented research at conferences, including a seminar on the “Generalized Uncertainty Principle and Delta-function potential well” at an UG Symposium organized by Presidency University in 2021.

Research focus:

Aniket Nag’s research is centered around quantum information and atomic-molecular physics, with a particular emphasis on the generalized uncertainty principle. His work explores the fundamental principles that govern quantum systems, contributing to the understanding of how these concepts apply to both theoretical and practical physics. Aniket’s interest in this area has led to multiple publications, including papers on the impact of the generalized uncertainty principle on anharmonic oscillators. His focus also extends to computational physics, where he employs tools like Fortran and Matlab to simulate and analyze complex systems. Aniket’s commitment to advancing the field of quantum physics is further demonstrated by his participation in discussions, seminars, and exhibitions related to cutting-edge topics such as LIGO and gravitational waves. His research aims to push the boundaries of knowledge in quantum information theory and its applications.

Publication Top Notes:

  • Paramanik, S., Nag, A., and Sahoo, S. Generalized uncertainty principle and delta-function potential, Ukrainian Journal of Physics, 67(8), pp.568-568 (2022)
  • Nag, A., and Sahoo, S. Effect of generalized uncertainty principle on anharmonic oscillator, Canadian Journal of Physics, 101(8), pp.373-377 (2023)

Conclusion:

Aniket Nag has laid a strong foundation for a promising career in research, particularly in the areas of quantum mechanics and uncertainty principles. His academic excellence, early research contributions, and technical skills make him a strong candidate for the Best Researcher Award. With a continued focus on broadening his research impact and gaining international exposure, he is poised to become a leading researcher in his field.