Pankaj Khirade | Experimental methods | Best Researcher Award

Dr. Pankaj Khirade | Experimental methods | Best Researcher Award

Shri Shivaji Science College, Amravati | India

Dr. Pankaj P. Khirade is an Assistant Professor at Shri Shivaji Science College, Amravati, India, specializing in material science. With a Doctorate in Physics (Material Science) from Dr. Babasaheb Ambedkar Marathwada University, he is renowned for his expertise in synthesizing and characterizing nanoscale materials such as ferrites, perovskites, nanocomposites, multiferroics, and radiation shielding materials. His contributions to scientific journals and international research establish him as an emerging figure in the academic community.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 🎓

Dr. Khirade’s academic journey began with a Bachelor of Science degree in Physics, Chemistry, and Computer Science from Deogiri College, Aurangabad, followed by his Master of Science in Physics (Material Science) from Garware College, Pune in 2009. His commitment to academic excellence led him to pursue a Ph.D. at Dr. Babasaheb Ambedkar Marathwada University, where he focused on the study of nanoscale materials and their applications in material science.

Professional Endeavors 💼

Currently serving as an Assistant Professor at Shri Shivaji Science College, Dr. Khirade also contributes as a Reviewer for several SCI and Scopus-listed journals, showcasing his active involvement in the academic and research community. His work is grounded in multidisciplinary research, combining material science with chemistry and physics to advance the field of nanoscale material synthesis and characterization.

Contributions and Research Focus 🔬

Dr. Khirade’s research interests are deeply focused on the synthesis and characterization of advanced materials like ferrites, nanocomposites, and multiferroics, especially their functional applications in various industrial sectors. With a particular focus on radiation shielding materials, his work has the potential to impact sectors like nuclear energy and electronics. He has published 37 articles in SCI and Scopus-listed journals, contributing extensively to the advancement of material science.

Impact and Influence 🌍

Dr. Khirade’s research has contributed significantly to material science, particularly in the area of nano-materials. His publications in reputed journals and the patent he holds further emphasize his impact. Additionally, his membership in professional organizations like the Indian Science Congress Association and the American Chemical Society illustrates his international recognition and his commitment to furthering research at a global level.

Citations📚

A total of 1486 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations  1486
  • h-index        22
  • i10-index     30

Research Skills 🛠️

Dr. Khirade has mastered various research techniques, including synthesis of advanced materials, X-ray diffraction, scanning electron microscopy, and nanomaterial characterization. He is also skilled in research writing, project management, and critical thinking, all of which contribute to his leadership in the academic field.

Teaching Experience 📚

With over a decade of experience, Dr. Khirade teaches undergraduate and postgraduate students in Physics at Shri Shivaji Science College. He not only imparts knowledge but also inspires future scientists through his engaging lectures on material science and nanotechnology.

Awards and Honors 🏆

Dr. Khirade’s dedication and excellence in research and teaching have earned him numerous accolades:

  • Life Member of Indian Science Congress Association
  • Professional Member of International Solar Energy Society, Germany
  • Multiple publications in international journals and conference proceedings
  • First-Class B.Ed. from Sant Gadge Baba Amravati University

Legacy and Future Contributions 🔮

Dr. Khirade aims to continue advancing his research in nanomaterials and material science through collaboration with international research communities. His future contributions are poised to revolutionize industries such as electronics, energy, and defense. By mentoring young minds, he is shaping the next generation of material scientists, ensuring a strong legacy in the academic world.

Publication Top Notes

Structural, microstructural and optical characteristics of rGO-ZnO nanocomposites via hydrothermal approach

  • Authors: GM Rajguru, RK Mishra, PB Kharat, PP Khirade
    Journal: Optical Materials
    Year: 2024

Experimental, theoretical and numerical simulation-based investigations on the fabricated Cu2ZnSn thin-film-based Schottky diodes with enhanced electron …

  • Authors: SV Mukhamale, MJ Kartha, PP Khirade
    Journal: Scientific Reports
    Year: 2024

Structural, morphological, and electrical investigation of 50 Mrad γ-radiated Ni1-xCdxFe2O4 nanoparticles

  • Authors: MR Patil, AP Keche, PP Khirade, AV Raut, AA Pandit, KM Jadhav
    Journal: Materials Today: Proceedings
    Year: 2022

Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation

  • Authors: SB Somvanshi, SR Patade, DD Andhare, SA Jadhav, MV Khedkar, …
    Journal: Journal of Alloys and Compounds
    Year: 2020

Induction Heating Analysis of Surface-Functionalized Nanoscale CoFe2O4 for Magnetic Fluid Hyperthermia toward Noninvasive Cancer Treatment

  • Authors: PB Kharat, SB Somvanshi, PP Khirade, KM Jadhav
    Journal: ACS Omega
    Year: 2020

 

 

 

Duyang Zang | Experimental methods | Best Researcher Award

Prof. Duyang Zang | Experimental methods | Best Researcher Award

Northwestern Polytechnical University | China

Duyang Zang is a professor in the School of Physical Science and Technology at Northwestern Polytechnical University, China. He holds a PhD in Physics from Paris-Sud University (2010) and has since become a leading figure in soft matter physics. His research spans topics such as capillary phenomena, interfacial rheology, and the dynamics of droplets and bubbles, with a particular focus on acoustic levitation. With a remarkable academic record, Zang has authored over 90 peer-reviewed journal papers and two books.

👨‍🎓 Profile

Scopus

Orcid

🎓 Early Academic Pursuits

Duyang Zang’s academic journey began with a deep interest in physics, leading him to earn his PhD in 2010 from Paris-Sud University. During his doctoral studies, he focused on complex systems and their physical behaviors at the interfaces, an area that would become central to his later research career. His foundational work laid the groundwork for his specialization in soft matter physics.

💼 Professional Endeavors

Currently, Zang is a professor at Northwestern Polytechnical University, where he continues to lead cutting-edge research in soft matter dynamics. Over the past decade, Zang has managed and contributed to over 10 major scientific projects funded by the National Natural Science Foundation of China and the Ministry of Education. His research is not limited to traditional soft matter studies but also explores the innovative application of acoustic levitation to manipulate soft matter systems.

🔬 Contributions and Research Focus

Zang’s work is at the forefront of soft matter physics, focusing on the physics and dynamics of interfaces in complex and soft matter systems. His key research areas include:

  • Capillary phenomena: Understanding how liquids interact with surfaces at a microscopic level.
  • Interfacial rheology: Investigating how soft materials behave under stress and deformation.
  • Droplet and bubble dynamics: Studying the movement, stability, and behavior of droplets and bubbles in various systems.
  • Phase behaviors: Exploring how materials transition between different phases, such as from liquid to gas or solid to liquid.

A particularly innovative aspect of his research is the exploration of combining soft matter physics with acoustic levitation, which enables novel ways of manipulating matter without physical contact.

📈 Academic Cites

Zang’s extensive body of work is reflected in his impressive citation count of more than 2,700 citations, with an h-index of 30 (as per Scopus). This demonstrates his significant and sustained influence in the scientific community, with numerous researchers building upon his findings to explore new areas of study.

🧠 Research Skills

Zang is recognized for his strong analytical and experimental research skills, which have enabled him to conduct groundbreaking work on interfacial phenomena and phase transitions. His ability to integrate theoretical models with experimental observations has made him a leader in both fundamental and applied research in soft matter physics. Additionally, his work in acoustic levitation showcases his ability to merge innovative technologies with classical research areas.

🏫 Teaching Experience

As a professor, Zang is deeply committed to the education and mentorship of the next generation of physicists. He has taught various courses, including those on soft matter physics and complex systems. His teaching extends beyond formal classrooms as he also participates in academic panels, conferences, and research guidance, offering valuable mentorship to graduate students and young researchers.

🏅 Awards and Honors

Duyang Zang’s work has earned him prestigious recognitions such as:

  • Top 10 Emerging Scientists Award of China (2018)
  • IAAM Scientist Medal (2021)
  • Fellow of the International Association of Advanced Materials (IAAM)
    His achievements are further underscored by his role on the editorial boards of leading journals like European Physical Journal E, Frontiers in Soft Matter, and Soft Matter.

🌟 Legacy and Future Contributions

Zang’s contributions have set the stage for continued advances in soft matter physics, especially in its application to new technologies and innovative materials. As a thought leader, he is likely to continue influencing the field by addressing complex challenges, such as dynamic interfaces and material design. Zang’s work, particularly in acoustic levitation, could open new frontiers in areas like biotechnology, nanotechnology, and advanced manufacturing.

  Publications Top Notes

Anisotropic growth dynamics of liquid bridge during droplet coalescence under acoustic levitation

  • Authors: Hongyue Chen, Xianyu Nong, Bokun Zhao, Wenxuan Zhong, Kangqi Liu, Zhen Chen, Duyang Zang
    Journal: Physical Review Fluids
    Year: 2025

Atomization by Acoustic Levitation Facilitates Contactless Microdroplet Reactions

  • Authors: Xiaoxu Li, Xianyu Nong, Chenghui Zhu, Xufeng Gao, Huan Chen, Xu Yuan, Dong Xing, Lu Liu, Chiyu Liang, Duyang Zang et al.
    Journal: Journal of the American Chemical Society
    Year: 2024

Ultrasound induced grain refinement of crystallization in evaporative saline droplets

  • Authors: Xiaoqiang Zhang, Hongyue Chen, Yuhan Wang, Xin Gao, Zhijun Wang, Nan Wang, Duyang Zang
    Journal: Ultrasonics Sonochemistry
    Year: 2024

Extraordinary stability of surfactant‐free bubbles suspended in ultrasound

  • Authors: Xiaoliang Ji, Wenxuan Zhong, Kangqi Liu, Yichen Jiang, Hongyue Chen, Wei Zhao, Duyang Zang
    Journal: Droplet
    Year: 2024

Toward Enhanced Aerosol Particle Adsorption in Never‐Bursting Bubble via Acoustic Levitation and Controlled Liquid Compensation

  • uthors: Xiaoliang Ji, Pingsong Jiang, Yichen Jiang, Hongyue Chen, Weiming Wang, Wenxuan Zhong, Xiaoqiang Zhang, Wei Zhao, Duyang Zang
    Journal: Advanced Science
    Year: 2023