Yeeu-Chang Lee | Experimental methods | Best Researcher Award

Prof. Yeeu-Chang Lee | Experimental methods | Best Researcher Award

Chung Yuan Christian University | Taiwan

Professor Yeeu-Chang Lee is a leading researcher in ultrafast laser–material interactions, micro/nano fabrication, and computational optics. Specializing in the integration of high-energy laser processing with optical simulations, Professor Lee’s work aims to innovate advanced photonic structures. His research contributes significantly to the development of energy-efficient and scalable photonics solutions, with a focus on improving systems like LEDs and optical diffusers through precise and novel microstructure designs.

👨‍🎓Profile

Scopus

Early Academic Pursuits 🎓

Professor Lee’s academic journey began with a passion for applied physics and optics, leading him to obtain his advanced degrees in the field of laser physics and material science. Early in his career, he was captivated by the intersection of laser technology and material manipulation, sparking his focus on ultrafast lasers and their applications in micro/nano fabrication. His early work laid the foundation for his current expertise in picosecond and femtosecond laser technologies.

Professional Endeavors 🏆

Professor Lee’s professional career has been marked by his leadership in cutting-edge projects involving high-energy laser processing. Throughout his career, he has held key positions in various academic and research institutions, advancing the development of laser-based fabrication techniques. His roles in research teams have centered around developing new ways to optimize light extraction and diffusion efficiency in photonic devices, with significant collaborations in both industry and academia.

Contributions and Research Focus 🔬

Professor Lee’s research focuses on bridging applied high-energy physics with computational science to solve pressing challenges in photonics and optical engineering. He has pioneered work in the fabrication of micro-lens arrays and subwavelength textures aimed at improving light extraction in devices like LEDs and optical diffusers. His innovative use of tools such as LightTools and Bezier-based modeling allows for precise simulations and optimization of microstructure design, leading to more efficient optical systems.

Impact and Influence 🌍

Professor Lee’s work has significantly influenced the field of photonics, especially in areas related to energy-efficient lighting and optical systems design. His pioneering contributions in laser processing and optical simulations have impacted industries focused on LEDs, displays, and renewable energy technologies. By developing new approaches to light field distribution and optical modeling, he has set new standards for high-precision fabrication in photonics.

Academic Cites 📚

With numerous publications in leading scientific journals, Professor Lee’s work has been widely cited in the fields of laser physics, materials science, and optical engineering. His contributions to picosecond and femtosecond laser applications have garnered attention globally, with his work often referenced in studies exploring advanced photonic structures and light manipulation technologies.

Research Skills 🧑‍🔬

Professor Lee’s expertise includes advanced techniques in ultrafast laser processing, micro/nano fabrication, and computational optics. He is proficient in optical simulation software such as LightTools and Bezier-based modeling, employing these tools for high-precision light field simulations and the optimization of microstructure designs. His work requires a deep understanding of laser-material interactions, material properties, and optical design principles to create innovative photonic solutions.

Teaching Experience 🎓

As a professor, Professor Lee has a strong track record of educating the next generation of optical engineers and laser scientists. He has taught courses on ultrafast lasers, photonics, and optical design, emphasizing practical, hands-on learning. His students benefit from his industry expertise and advanced knowledge of laser-material interactions, which helps them bridge the gap between theory and application.

🎓🤝Industry-Academia Collaboration

Prof. Yeeu-Chang Lee has a strong foundation in academic research and a forward-looking vision for real-world applications. He has actively contributed to scholarly innovation and industry-academia collaboration. Through leading and participating in multiple pilot programs, he has helped bridge academic research with industrial transformation particularly in cultivating professional talent and facilitating the upgrade of manufacturing capabilities in industrial parks.
His work has been recognized through national awards for invention and excellence in industry-academia collaboration, reflecting a sustained commitment to integrating research innovation with societal and industrial impact.
Selected Industry-Academia Collaboration Projects:
  • Development of reverse nanoimprint lithography for fabricating nanopatterned sapphire substrates
  • Enhancing the efficiency of light-emitting diodes through soft precision imprinting technology
  • Development of a fabrication process for nanostructured sapphire substrates
  • Investigation of nanopatterning on 2-inch full sapphire wafers
  • Process development of laser-based resistor trimming for embedded printed circuit boards
  • Preparation and characterization of microstructured optical thin films
Value-Added Collaboration and Outreach Projects:
  • National Science and Technology Council (NSTC) Project for Research Outcome Exploration and Value-Added Application
  • Revitalization and Upgrade Program for Industrial Park Manufacturers
  • Pilot Project for Training Professionals in Industrial Equipment and System Design

Legacy and Future Contributions 🌱

Looking ahead, Professor Lee is committed to continuing his work in advanced photonics and optical engineering. His vision for the future includes the development of next-generation energy-efficient optical systems that can have a transformative impact on industries such as renewable energy, consumer electronics, and communications. As he continues to push the boundaries of laser fabrication and optical simulations, his legacy will undoubtedly influence the next era of photonics technologies.

Publications Top Notes

Fabrication and simulation of optical shaping diffuser to control light patterns

  • Authors: P., Chiu, Powei; T.L., Chang, Tien Li; W., Chen, Weichun; Y., Lee, Yeouchang
    Journal: Micro and Nanostructures
    Year: 2025

Fabricating ordered array of polystyrene spheres on concave structure via 3D micro-printing

  • Authors: L.E., Kang, Li En; Y., Lee, Yeouchang
    Journal: Journal of Nanoparticle Research
    Year: 2024

The Synthesis and Assembly Mechanism of Micro/Nano-Sized Polystyrene Spheres and Their Application in Subwavelength Structures

  • Authors: Y., Lee, Yeouchang; H., Wu, Hsukang; Y.Z., Peng, Yu Zhong; W., Chen, Weichun
    Journal: Micromachines
    Year: 2024

 

Yue Song | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Yue Song | Experimental methods | Best Researcher Award

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences | China

Dr. Song Yue is an Associate Researcher at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, specializing in high-power semiconductor lasers and the failure mechanisms of these lasers. With a PhD from the University of Chinese Academy of Sciences, she has made significant contributions to the field, including proposing new models on defect evolution and indium atom migration in semiconductor materials.

👨‍🎓Profile

Scopus

Early Academic Pursuits 📚

Dr. Song completed her PhD at the University of Chinese Academy of Sciences, where she gained deep knowledge in semiconductor lasers and the mechanisms affecting their efficiency and longevity. Her academic path was characterized by an early focus on understanding the complex behaviors of semiconductor materials under various operational conditions. Her research foundation laid the groundwork for her future innovations.

Professional Endeavors 💼

Dr. Song is an Associate Researcher at the Changchun Institute of Optics, Fine Mechanics and Physics. In this role, she has led numerous research projects, most notably focusing on high-power semiconductor lasers. She has been an integral part of key national research initiatives, including projects funded by the National Natural Science Foundation of China and the National Key Research and Development Program of China. These efforts have not only advanced her field but also brought significant funding and resources into her research domain.

Contributions and Research Focus 🔬

Dr. Song’s research is primarily focused on the development and efficiency enhancement of semiconductor lasers. Her contributions include the thermal defect evolution models for quantum wells in AlGaInAs and introducing a strained compensation layer in superlattice structures. These innovations are aimed at improving the performance and reliability of gain chips, which are central to high-power laser technology. She also proposed a novel approach to understanding indium atom migration in semiconductor materials using the dark state model, shedding light on failure mechanisms that affect the lifespan and stability of these lasers.

Impact and Influence 🌍

Dr. Song’s research has had a profound impact on the semiconductor laser industry, particularly by improving the efficiency and reliability of gain chips. Her findings are widely cited, and her work on thermal effects and indium atom migration has set new standards in the industry. Additionally, her involvement in developing group standards for the China Association of Automobile Manufacturers has led to practical applications of her research in the automotive sector.

Academic Cites 📑

Dr. Song has authored over 30 academic papers, including 14 SCI core papers as the first or corresponding author. Her work is frequently cited in the scientific community, particularly in the domains of semiconductor lasers and optical materials. She has also coauthored a monograph, expanding the breadth of her influence in the academic world.

Research Skills 🔧

Dr. Song is skilled in the theoretical modeling of semiconductor materials and laser systems. Her ability to develop defect models, atom migration theories, and structure enhancements demonstrates her expertise in both computational and experimental research. Her work is deeply rooted in quantum mechanics, material science, and optical engineering, making her a well-rounded researcher in the field.

Awards and Honors 🏅

Dr. Song has received multiple accolades recognizing her contributions, including:

  • High-level D Talents of Jilin Province
  • Dawn Talent title
  • Membership in the Changbai Mountain Leading Team
  • Changchun Institute of Optics Excellent Achievement Award
  • Institute’s Special Youth Reward Plan C-level award
  • Institute’s Innovation Practice Project Special Award
  • Recognition in the Wiley China Excellent Author Program

These honors reflect her outstanding contributions to both her field of research and the broader scientific community.

Legacy and Future Contributions 🌟

Dr. Song is poised to continue making groundbreaking contributions to semiconductor laser technology. Her work already impacts both academic research and industry applications, particularly in fields requiring high-efficiency lasers such as telecommunications, automotive technologies, and defense systems. As her research evolves, she is likely to contribute to advancements in quantum computing and photonic devices, leaving a lasting legacy in the world of optics and laser technology.

Publications Top Notes

High-power and ultra-wide-tunable fiber-type external-cavity diode lasers

  • Authors: Q. Cui, Y. Lei, C. Yang, L. Qin, L. Wang
    Journal: Optics and Laser Technology
    Year: 2025

Integrated Light Sources Based on Micro-Ring Resonators for Chip-Based LiDAR

  • Authors: L. Huang, C. Yang, L. Liang, Y. Ding, L. Wang
    Journal: Laser and Photonics Reviews
    Year: 2025

Recent Advances in Tunable External Cavity Diode Lasers

  • Authors: Y. Wang, Y. Song
    Journal: Applied Sciences (Switzerland)
    Year: 2025

Noise characteristics of semiconductor lasers with narrow linewidth

  • Authors: H. Wang, Y. Lei, Q. Cui, L. Qin, L. Wang
    Journal: Heliyon
    Year: 2024