Abdelmounaim Chetoui | Experimental methods | Academic Excellence in Applied Physics Award

Dr. Abdelmounaim Chetoui | Experimental methods | Academic Excellence in Applied Physics Award

Research assistant, CRTSE, Algeria

Dr. Abdelmounaim Chetoui is a dedicated researcher in materials physics, specializing in semiconductors, thin films, and nanostructures. With over six years of research experience, he is currently affiliated with the Research Center in Semiconductor Technology for Energetics (CRTSE) in Algiers. He holds a Ph.D. in Materials Physics from USTHB, Algeria, and has pursued academic training in both Algeria and France. His expertise includes photoluminescence, spray pyrolysis, and nanomaterials for photovoltaics and gas sensors. Dr. Chetoui has an excellent grasp of interdisciplinary research and experimental design.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Chetoui began his academic journey with a Bachelor’s in Fundamental Physics from the University of Sétif, followed by a Maitrise and Master’s in Materials Engineering from the University of Strasbourg, France. His academic focus was on solid-state physics and materials science, laying a strong foundation for his research career. He culminated this phase with a Doctorate in Materials Physics from USTHB, where his doctoral work explored the optical and structural behavior of semiconductor thin films, especially in photovoltaics and gas sensing.

🏢 Professional Endeavors

Dr. Chetoui has held research positions at prestigious Algerian institutions including CDTA and CRTSE, contributing extensively to semiconductor research and device engineering. As a Research Engineer Advisor, he led multiple projects on metallic oxide synthesis, spray pyrolysis device design using SolidWorks, and thin film characterization. His current role at CRTSE involves cutting-edge material synthesis for energy applications. From 2013 to 2014, he also served as an Assistant Teacher at USTHB, mentoring students in electricity and mechanics, showcasing his dedication to both research and education.

🔬 Contributions and Research Focus

Dr. Chetoui’s research revolves around nanostructured semiconductors, luminescent materials, and thin-film deposition techniques. He has made significant contributions to the study of ZnS, ZrO₂, V₂O₅, NiO, and perovskite-based materials through both experimental and DFT (density functional theory) studies. His work integrates photoluminescence, photocatalysis, and nanocomposites for energy conversion and environmental remediation. A key focus of his work is the use of spray pyrolysis, a cost-effective technique for fabricating high-performance thin films for solar energy and sensing applications.

🌍 Impact and Influence

Dr. Chetoui’s research has contributed to the development of nanomaterials with enhanced optical and photocatalytic properties, impacting fields such as renewable energy, environmental cleanup, and nanoelectronics. His collaborative studies on Zn1−xMgxS, SiNx, and rGO-based nanostructures offer valuable insights into material optimization for visible-light-driven photocatalysis. His role in cross-disciplinary teams and international publication record helps bridge theoretical understanding with practical applications. These contributions make him a valuable asset in advancing sustainable nanotechnology in the MENA region and beyond.

📚 Academic Cites

Dr. Chetoui has co-authored over 20 international publications in reputable journals like Applied Physics A, Physica B, Solid State Sciences, and Diamond & Related Materials. His work on photocatalytic nanocomposites, luminescent thin films, and solid-state phosphors has attracted attention in the materials science and semiconductor communities. Notable studies include his 2024 research on ZrV₂O₇ nanoparticles, Eu³⁺-doped phosphors, and graphene-based heterojunctions, contributing to an increasing citation index and strengthening his global scientific footprint.

🧪 Research Skills

Dr. Chetoui has hands-on expertise in spray pyrolysis, solvothermal synthesis, and solid-state reactions. His technical arsenal includes XRD, SEM, AFM, FTIR, and photoluminescence spectroscopy. Adept in software like SolidWorks, he has designed customized deposition systems and analyzed complex materials using optical and structural simulation tools. His research merges materials chemistry, device engineering, and physics, demonstrating analytical precision, instrumental knowledge, and problem-solving ability critical for experimental physics and nanotechnology development.

👨‍🏫 Teaching Experience

As an Assistant Teacher at USTHB, Dr. Chetoui taught physics tutorials in electricity and mechanics, demonstrating strong pedagogical skills. His teaching involved hands-on lab supervision, conceptual instruction, and assessment design, providing foundational physics knowledge to undergraduate students. His bilingual fluency in French and English further enhances his communication in diverse academic settings. He is well-prepared to deliver graduate-level lectures on semiconductors, thin film physics, and optical materials, making him a valuable educator and mentor in higher education.

🏅 Awards and Honors

While explicit awards are not listed, Dr. Chetoui’s academic journey through international institutions, his research output, and consistent participation in scientific events demonstrate high merit and recognition in his field. Presenting at over 10 national and international conferences, including ICASE, EMS, and ICMS, he has contributed valuable insights on ZnS-based nanomaterials, luminescent oxides, and environmental applications of nanotechnology. His selection to present at these forums reflects peer acknowledgment and research credibility in applied materials science.

🌟 Legacy and Future Contributions

Dr. Chetoui’s work positions him to make impactful contributions to next-generation nanomaterials for energy harvesting, environmental monitoring, and photonics. He is expected to lead collaborative research, initiate international projects, and expand into emerging materials platforms like 2D materials and hybrid perovskites. With a commitment to sustainable innovation and scientific mentorship, he is poised to leave a lasting legacy in applied physics and nanotechnology. His future efforts will likely strengthen the scientific community’s ability to tackle climate, energy, and material efficiency challenges.

Publications Top Notes


Band Structure Engineering in InVO₄/g-C₃N₄/V₂O₅ Heterojunctions for Enhanced Type II and Z-Scheme Charge Transfer

  • Authors: Abdelmounaim Chetoui, Ilyas Belkhettab, Amal Elfiad, Ismail Bencherifa, Messai Youcef
    Journal: Vacuum
    Year: 2025

Effect of Li⁺ Co-doping on Structural, Morphological and Photoluminescence Spectroscopy of ZnO: Eu³⁺ Nanocrystal Powders

  • Authors: Wafia Zermane, Lakhdar Guerbous, Widad Bekhti, Ahmed Rafik Touil, Mohamed Taibeche, Abdelmounaim Chetoui, Lyes Benharrat, Nadjib Baadji, Mustapha Lasmi, Abdelmadjid Bouhemadou
    Journal: Ceramics International
    Year: 2025

An In-Depth Photoluminescence Investigation of Charge Carrier Transport in ZrO₂|V₂O₅ Type I Junction: Probing the Production of Hydroxyl Radicals

  • Authors: Abdelmounaim Chetoui, Ilyas Belkhettab, Amal Elfiad, Youcef Messai, Aicha Ziouche, Meftah Tablaoui
    Journal: Applied Surface Science
    Year: 2024

Elaboration and Characterization of Amorphous Silicon Carbide Thin Films (a-SiC) by Sputtering Magnetron Technique for Photoelectrochemical CO₂ Conversion

  • Authors: Abdelmounaim Chetoui
    Journal: Silicon
    Year: 2022

Physicochemical Investigation of Pure Cadmium Hydroxide Cd(OH)₂ and Cd(OH)₂–CdO Composite Material Deposited by Pneumatic Spray Pyrolysis Technique

  • Authors: Abdelmounaim Chetoui
    Journal: Applied Physics A
    Year: 2022

 

Yue Song | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Yue Song | Experimental methods | Best Researcher Award

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences | China

Dr. Song Yue is an Associate Researcher at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, specializing in high-power semiconductor lasers and the failure mechanisms of these lasers. With a PhD from the University of Chinese Academy of Sciences, she has made significant contributions to the field, including proposing new models on defect evolution and indium atom migration in semiconductor materials.

👨‍🎓Profile

Scopus

Early Academic Pursuits 📚

Dr. Song completed her PhD at the University of Chinese Academy of Sciences, where she gained deep knowledge in semiconductor lasers and the mechanisms affecting their efficiency and longevity. Her academic path was characterized by an early focus on understanding the complex behaviors of semiconductor materials under various operational conditions. Her research foundation laid the groundwork for her future innovations.

Professional Endeavors 💼

Dr. Song is an Associate Researcher at the Changchun Institute of Optics, Fine Mechanics and Physics. In this role, she has led numerous research projects, most notably focusing on high-power semiconductor lasers. She has been an integral part of key national research initiatives, including projects funded by the National Natural Science Foundation of China and the National Key Research and Development Program of China. These efforts have not only advanced her field but also brought significant funding and resources into her research domain.

Contributions and Research Focus 🔬

Dr. Song’s research is primarily focused on the development and efficiency enhancement of semiconductor lasers. Her contributions include the thermal defect evolution models for quantum wells in AlGaInAs and introducing a strained compensation layer in superlattice structures. These innovations are aimed at improving the performance and reliability of gain chips, which are central to high-power laser technology. She also proposed a novel approach to understanding indium atom migration in semiconductor materials using the dark state model, shedding light on failure mechanisms that affect the lifespan and stability of these lasers.

Impact and Influence 🌍

Dr. Song’s research has had a profound impact on the semiconductor laser industry, particularly by improving the efficiency and reliability of gain chips. Her findings are widely cited, and her work on thermal effects and indium atom migration has set new standards in the industry. Additionally, her involvement in developing group standards for the China Association of Automobile Manufacturers has led to practical applications of her research in the automotive sector.

Academic Cites 📑

Dr. Song has authored over 30 academic papers, including 14 SCI core papers as the first or corresponding author. Her work is frequently cited in the scientific community, particularly in the domains of semiconductor lasers and optical materials. She has also coauthored a monograph, expanding the breadth of her influence in the academic world.

Research Skills 🔧

Dr. Song is skilled in the theoretical modeling of semiconductor materials and laser systems. Her ability to develop defect models, atom migration theories, and structure enhancements demonstrates her expertise in both computational and experimental research. Her work is deeply rooted in quantum mechanics, material science, and optical engineering, making her a well-rounded researcher in the field.

Awards and Honors 🏅

Dr. Song has received multiple accolades recognizing her contributions, including:

  • High-level D Talents of Jilin Province
  • Dawn Talent title
  • Membership in the Changbai Mountain Leading Team
  • Changchun Institute of Optics Excellent Achievement Award
  • Institute’s Special Youth Reward Plan C-level award
  • Institute’s Innovation Practice Project Special Award
  • Recognition in the Wiley China Excellent Author Program

These honors reflect her outstanding contributions to both her field of research and the broader scientific community.

Legacy and Future Contributions 🌟

Dr. Song is poised to continue making groundbreaking contributions to semiconductor laser technology. Her work already impacts both academic research and industry applications, particularly in fields requiring high-efficiency lasers such as telecommunications, automotive technologies, and defense systems. As her research evolves, she is likely to contribute to advancements in quantum computing and photonic devices, leaving a lasting legacy in the world of optics and laser technology.

Publications Top Notes

High-power and ultra-wide-tunable fiber-type external-cavity diode lasers

  • Authors: Q. Cui, Y. Lei, C. Yang, L. Qin, L. Wang
    Journal: Optics and Laser Technology
    Year: 2025

Integrated Light Sources Based on Micro-Ring Resonators for Chip-Based LiDAR

  • Authors: L. Huang, C. Yang, L. Liang, Y. Ding, L. Wang
    Journal: Laser and Photonics Reviews
    Year: 2025

Recent Advances in Tunable External Cavity Diode Lasers

  • Authors: Y. Wang, Y. Song
    Journal: Applied Sciences (Switzerland)
    Year: 2025

Noise characteristics of semiconductor lasers with narrow linewidth

  • Authors: H. Wang, Y. Lei, Q. Cui, L. Qin, L. Wang
    Journal: Heliyon
    Year: 2024