Efdal OKTAY GULTEKIN |Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Efdal OKTAY GULTEKIN |Experimental methods | Best Researcher Award

 Associate Professor, Toros University, Turkey

👨‍🎓 Profile

Early Academic Pursuits 🎓

Efdal Oktay Gültekin embarked on his academic journey with a Bachelor’s Degree in 2008, followed by a Master’s Degree in Medical Microbiology in 2013. His Master’s thesis focused on the potential mini epidemics caused by Candida species isolated from catheterized patients. He pursued further academic excellence with a Doctoral degree in 2020, under the guidance of Prof. Dr. Nuran Delialıoğlu. His doctoral research was centered on Escherichia coli isolates, particularly investigating the virulence genes associated with urosepsis. This early academic trajectory laid the foundation for his future research endeavors in microbiology and medical sciences.

Professional Endeavors 🏥

Efdal Oktay Gültekin’s career reflects his growing expertise and commitment to advancing medical science. Since 2021, he has held the position of Assistant Professor at Toros University, specifically in the Health Services Vocational School, where he was promoted to Associate Professor in 2024. His academic leadership also extends to administrative roles, including his appointment as the Deputy Director of the Research and Application Center at Toros University in 2023. He has demonstrated a deep dedication to enhancing both academic and professional spheres through his roles in education, research, and institutional leadership.

Contributions and Research Focus 🔬

Dr. Gültekin’s research is primarily focused on medical microbiology, antimicrobial resistance, and infectious diseases. His groundbreaking work includes studying virulence factors in pathogens like E. coli and Candida species, as well as their relation to healthcare-associated infections. Notably, he has explored biocide resistance in Acinetobacter baumannii isolates, a topic critical to modern healthcare challenges. His research also extends to radiation shielding and antimicrobial properties of materials, indicating his diverse scientific pursuits that bridge microbiology, physics, and public health.

Impact and Influence 🌍

Through his leadership in both academic and professional settings, Dr. Gültekin has become a significant figure in medical microbiology. His published articles in prestigious international journals have contributed to advancing knowledge in areas such as HPV, cervical cancer, COVID-19, and antimicrobial resistance. Furthermore, his research on Candida albicans prevalence among high-risk populations, and his comparison of antibody responses to vaccines, has influenced healthcare practices, particularly in the prevention and management of infections. His work stands as an essential resource for researchers and clinicians in the field of microbiology.

Academic Cites and Recognition 📚

Dr. Gültekin has significantly contributed to the academic community, with numerous publications in refereed journals. His most recent work, including studies on gamma radiation shielding and HPV awareness, has been cited in the Black Sea Journal of Health Science and other prominent publications. His work on antibody responses to COVID-19 vaccines and his studies on the virulence factors of pathogens have brought him recognition both nationally and internationally, securing his place as a leading figure in medical microbiology.

Technical Skills 🖥️

In addition to his profound academic knowledge, Dr. Gültekin has demonstrated extensive technical expertise in various laboratory techniques, including PCR-based diagnostics, antimicrobial susceptibility testing, and molecular methods for genetic analysis. His hands-on experience with medical technologies and biomedical applications is exemplified in his involvement with patents such as the smart injector and electromagnetic radiation-absorbing materials. These innovations highlight his commitment to integrating technical advancements with healthcare practices to improve public health outcomes.

Teaching Experience 🍎

Dr. Gültekin’s teaching experience is extensive, with a focus on microbiology, parasitology, and infectious diseases. His courses, such as Tıbbi Mikrobiyoloji (Medical Microbiology) and Enfeksiyon Hastalıkları (Infectious Diseases), provide students with a comprehensive understanding of the microbial world and its implications for human health. His pedagogical approach blends theoretical instruction with practical applications, equipping students with the skills and knowledge necessary for their future careers in the health sciences.

Legacy and Future Contributions 🌟

Dr. Gültekin’s legacy is firmly rooted in his commitment to advancing both medical education and healthcare research. His pioneering work in microbial resistance and his innovative contributions in the field of medical technology are set to continue shaping the future of healthcare. As he continues to inspire students and collaborate with fellow researchers, Dr. Gültekin’s work will undoubtedly play a pivotal role in addressing some of the most pressing challenges in public health, including antimicrobial resistance and infectious disease management. His ongoing research and future contributions hold the promise of substantial improvements in global health.

Top Noted Publications

Investigation of gamma radiation shielding and antimicrobial properties of PbO-doped ZnO and TiO2 composites
  • Authors: Arzu Coskun, Efdal Oktay Gultekin, Mahmut Ulger, Betül Cetin
    Journal: Radiation Physics and Chemistry
    Year: 2024

Information About X-Ray Radiation, Determining The Awareness Level of Vocational School of Health Services Students

  • Authors: Arzu Coşkun, Efdal Oktay Gultekin, Tiinçe Aksak
    Journal: Journal of International Health Sciences and Management
    Year: 2022
Antimicrobial Susceptibility and Molecular Characterization of Multidrug-Resistant Acinetobacter baumannii Isolated in an University Hospital
  • Authors: Şahin Direkel, Ayşegül Çöprü, Alper Karagöz, Ejder Nebahat Aydogan, Efdal Oktay, Nuran Delialioglu, Osman Birol Özgümüş, Riza Durmaz
    Journal: Mikrobiyoloji Bülteni
    Year: 2016
Evaluation of digital healthcare services and satisfaction of outpatients at the City Training and Research Hospital located in the South of Turkey during Covid-19 pandemic
  • Authors: A Kayserili, Efdal Oktay Gultekin, Tiinçe Aksak, Arzu Coşkun
    Journal: Journal of International Health Sciences and Management
    Year: 2022

Comparison of HPV and Cervical Cancer Awareness of Male and Female University Students

  • Authors: Tiinçe Aksak, Efdal Oktay Gultekin
    Journal: Black Sea Journal of Health Science
    Year: 2024

 

 

Abdul Muneeb| Experimental methods | Best Researcher Award

Mr. Abdul Muneeb| Experimental methods | Best Researcher Award

Research Associate at University of Engineering and Technology, Lahore, Pakistan

Abdul Muneeb, born on October 3, 1995, in Pakistan, is an emerging researcher in applied physics. He recently completed his MPhil from the University of Engineering and Technology (UET), Lahore. His academic journey has been marked by a profound commitment to advancing research in nanomaterials, photocatalysis, and experimental plasma physics. His MPhil thesis focused on fabricating Ag-TiO2 nanocomposites using Dielectric Barrier Discharge (DBD) plasma for the photodegradation of methylene blue. Abdul’s dedication to his field is reflected in his published works in high-impact international journals. Currently, he is pursuing a fully funded Ph.D. position to further explore photocatalysis and plasma-based materials, with the goal of making substantial contributions to both academia and industry.

Profile:

Education:

Abdul Muneeb holds an MPhil in Applied Physics from the University of Engineering and Technology (UET), Lahore, which he completed in 2022 with a CGPA of 3.15. His thesis focused on the photocatalytic activities of Ag-TiO2 nanocomposites, which he prepared using Dielectric Barrier Discharge (DBD) plasma. Throughout his education, he developed expertise in various advanced fields, including nanomaterials, experimental plasma physics, and material characterization techniques like XRD, FESEM, and UV-Vis spectroscopy. His coursework included specialized subjects such as photonics, optoelectronics, and advanced lasers. With a strong foundation in applied physics and hands-on experience with experimental techniques, Abdul’s academic training has prepared him for advanced research in plasma and nanotechnology fields.

Professional experience:

Abdul Muneeb has gained valuable experience as a Research Associate at the Faculty of Natural Sciences, UET Lahore, since 2022. In this role, he has been involved in designing and implementing research protocols, developing new product tests, and supervising junior researchers. He has contributed to various research publications and scholarly activities, focusing on nanomaterials and experimental plasma physics. Abdul also worked as a visiting lecturer at UET New Campus KSK from December 2022 to July 2023, where he delivered lectures on various physics topics and guided students through practical laboratory experiments. His experience in both academia and research has equipped him with the skills to effectively communicate scientific knowledge and contribute to cutting-edge research in his field.

Research focus:

Abdul Muneeb’s research focus lies at the intersection of nanotechnology, photocatalysis, and experimental plasma physics. His MPhil research primarily centered on the fabrication of Ag-TiO2 nanocomposites using Dielectric Barrier Discharge (DBD) plasma for environmental applications, specifically in the photodegradation of methylene blue. His work explores the potential of plasma-assisted synthesis methods to enhance the photocatalytic efficiency of nanomaterials. Additionally, Abdul’s interests extend to the development of novel metal oxide semiconductor photocatalysts and the characterization of materials using advanced techniques such as XRD, FESEM, and UV-Vis spectroscopy. He aims to contribute to the fields of plasma physics and nanomaterials by advancing the understanding of how plasma processes can be used to create innovative materials for environmental and industrial applications.

Awards and Honors:

Abdul Muneeb has received recognition for his academic excellence and research contributions. During his MPhil studies, he earned high grades in advanced subjects such as photonics, optoelectronics, and lasers, receiving praise from his professors for his exceptional skills. He secured third position in an energy-saving campaign poster competition during his undergraduate studies at the Government College of Science in Lahore. His research work has been acknowledged through publications in reputed international journals, including Physica B: Condensed Matter and Environmental Health Insights. Abdul has actively participated in various national and international conferences, presenting his research at the 5th International Conference on Material Science & Nanotechnology 2022, where he was a speaker. His dedication to pushing the boundaries of applied physics has earned him admiration from both his mentors and peers.

Publication Top Notes:

  • Publication Title: Emission of ions and electrons correlated with soft and hard x-rays evolution from thermal plasma
    Authors: Ahmad, A.N., Rafique, M.S., Arslan, M., Mahmood, H., Amir, M.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Atmospheric pressure plasma-assisted growth of hexagonal boron nitride nanosheets for improved aluminum hardness
    Authors: Mudassar, M., Rafique, M.S., Naveed, A., Aamir, M., Razaq, M.B.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Enhanced thermal conductivity of plasma generated ZnO–MgO based hybrid nanofluids: An experimental study
    Authors: Nazir, A., Qamar, A., Rafique, M.S., Fayaz, H., Saleel, C.A.
    Publication Year: 2024
    Citations: 3
  • Publication Title: Closed-Loop Implantable Neurostimulators for Individualized Treatment of Intractable Epilepsy: A Review of Recent Developments, Ongoing Challenges, and Future Opportunities
    Authors: Kassiri, H., Muneeb, A., Salahi, R., Dabbaghian, A.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Abatement of Aerosols by Ionic Wind Extracted From Dielectric Barrier Discharge Plasma
    Authors: Arshad, T., Rafique, M.S., Bashir, S., Shahadat, I., Nayab, N.
    Publication Year: 2024
    Citations: 0
  • Publication Title: Fabrication of Ag–TiO2 nanocomposite employing dielectric barrier discharge plasma for photodegradation of methylene blue
    Authors: Muneeb, A., Rafique, M.S., Murtaza, M.G., Rafique, M., Nazir, A.
    Publication Year: 2023
    Citations: 3
  • Publication Title: Automated Door to Prevent COVID-19 using Fuzzy Logic
    Authors: Khokhar, S.-U.-D., Sohaib, R., Muneeb, A., Noor, M.Y., Imran, M.
    Publication Year: 2023
    Citations: 0
  • Publication Title: A 9.5ms-Latency 6.2μJ/Inference Spiking CNN for Patient-Specific Seizure Detection
    Authors: Muneeb, A., Mehrotra, S., Kassiri, H.
    Publication Year: 2023
    Citations: 1
  • Publication Title: Energy-Efficient Spiking-CNN-Based Cross-Patient Seizure Detection
    Authors: Muneeb, A., Kassiri, H.
    Publication Year: 2023
    Citations: 5
  • Publication Title: A 2.7μJ/classification Machine-Learning based Approximate Computing Seizure Detection SoC
    Authors: Muneeb, A., Ali, M., Altaf, M.A.B.
    Publication Year: 2022
    Citations: 7

 

 

Marzieh Abbasi-Firouzjah | Experimental methods | Best Researcher Award

Dr. Marzieh Abbasi-Firouzjah | Experimental methods | Best Researcher Award

Academician/Research Scholar at Hakim Sabzevari University, Iran

Marzieh Abbasi-Firouzjah is an Associate Professor in the Department of Sciences Engineering at Hakim Sabzevari University, Sabzevar, Iran. Born in 1984, she has established herself as a leading expert in plasma engineering, with a particular focus on the photonics field. Dr. Abbasi-Firouzjah has made significant contributions to thin film deposition technologies and plasma systems. Her extensive academic background and research have earned her numerous publications in highly respected journals. With years of experience in both teaching and research, she continues to advance the frontiers of plasma technology while contributing to the academic community through her editorial and review work for prestigious journals.

Profile:

Education:

Dr. Abbasi-Firouzjah completed her Ph.D. in Photonics, specializing in Plasma Engineering, at Shahid Beheshti University’s Laser & Plasma Research Institute from 2010 to 2014. Her doctoral research focused on investigating plasma parameters in silica-based thin films deposited using plasma-enhanced chemical vapor deposition (PECVD), under the supervision of Dr. Babak Shokri. Prior to her Ph.D., she obtained her M.Sc. in Plasma Engineering at the same institution, working on silicon oxide film deposition using TEOS vapor. She began her academic journey with a B.Sc. in Atomic and Molecular Physics from the University of Mazandaran, where she explored underwater acoustic wave tracking for her undergraduate project. Her diverse educational background underpins her advanced research in plasma systems and thin film technology.

Professional experience:

Dr. Abbasi-Firouzjah brings a wealth of experience in both research and teaching, having specialized in the design, construction, and application of plasma systems for thin film deposition. She has worked extensively with RF, MW, and DC pulsed plasma generators, and her expertise includes using PECVD, DBD, and Sputtering reactors. She is proficient in advanced spectroscopy methods and the operation of vacuum systems. Her technical skills extend to the construction of multifunctional systems for plasma chemical vapor deposition and pulsed laser deposition. Dr. Abbasi-Firouzjah is also involved in antibacterial testing and has reviewed research for leading journals like Diamond & Related Materials and IEEE Transactions on Nanotechnology. Her work has helped push the boundaries of plasma engineering applications in both industrial and academic contexts.

Research focus:

Dr. Abbasi-Firouzjah’s research primarily revolves around plasma-enhanced chemical vapor deposition (PECVD) techniques and their application in the fabrication of thin films. Her work explores the optimization of plasma parameters to improve the structural, electrical, and optical properties of silica-based films. She has made significant contributions to the development of transparent, hard optical coatings, as well as the antibacterial and wettability properties of plasma-modified surfaces for biomedical applications. Additionally, her research extends to the deposition mechanisms of silicon oxide films and fluorinated diamond-like carbon films, with a focus on improving the mechanical and electrochemical properties of multilayer coatings. Dr. Abbasi-Firouzjah’s work has implications for industries ranging from optics to biomedicine, where advanced materials are critical for innovation.

Awards and Honors:

Dr. Marzieh Abbasi-Firouzjah has received numerous accolades for her contributions to plasma engineering and thin film technologies. Her research publications, featured in high-impact journals such as Journal of Non-Crystalline Solids and Journal of Thin Solid Films, highlight her leading role in the field. She has been invited to present at major international conferences, including the International Conference on Plasma Surface Engineering and the IEEE International Conference on Plasma Sciences. Dr. Abbasi-Firouzjah’s pioneering work on transparent and hard optical coatings and antibacterial applications of plasma-modified materials has positioned her as a recognized figure in the scientific community. Her dedication to advancing plasma technologies has been acknowledged through her inclusion in prestigious academic and industrial journals.

Publication Top Notes:

  • FTIR analysis of silicon dioxide thin film deposited by metal organic-based PECVD
    Authors: B. Shokri, M.A. Firouzjah, S.I. Hosseini
    Year: 2009
    Citation: 176
  • Investigation of antibacterial and wettability behaviours of plasma-modified PMMA films for application in ophthalmology
    Authors: F. Rezaei, M. Abbasi-Firouzjah, B. Shokri
    Year: 2014
    Citation: 104
  • The effect of TEOS plasma parameters on the silicon dioxide deposition mechanisms
    Authors: M. Abbasi-Firouzjah, S.I. Hosseini, M. Shariat, B. Shokri
    Year: 2013
    Citation: 60
  • Investigation of the properties of diamond-like carbon thin films deposited by single and dual-mode plasma enhanced chemical vapor deposition
    Authors: S.I. Hosseini, B. Shokri, M.A. Firouzjah, S. Kooshki, M. Sharifian
    Year: 2011
    Citation: 30
  • The effect of duty cycle on the mechanical and electrochemical corrosion properties of multilayer CrN/CrAlN coatings produced by cathodic arc evaporation
    Authors: N. Arab Baseria, M. Mohammadi, M. Ghatee, M. Abbasi-Firouzjah, et al.
    Year: 2020
    Citation: 27
  • Improving the oxygen barrier properties of PET polymer by radio frequency plasma-polymerized SiOxNy thin film
    Authors: M. Shahpanah, S. Mehrabian, M. Abbasi-Firouzjah, B. Shokri
    Year: 2019
    Citation: 25
  • Antibacterial properties of fluorinated diamond-like carbon films deposited by direct and remote plasma
    Authors: S.I. Hosseini, Z. Javaherian, D. Minai-Tehrani, R. Ghasemi, Z. Ghaempanah, et al.
    Year: 2017
    Citation: 18
  • Characterization of fluorinated silica thin films with ultra-low refractive index deposited at low temperature
    Authors: M. Abbasi-Firouzjah
    Year: 2015
    Citation: 15
  • Characteristics of ultra low-k nanoporous and fluorinated silica based films prepared by plasma enhanced chemical vapor deposition
    Authors: M. Abbasi-Firouzjah, B. Shokri
    Year: 2013
    Citation: 13
  • Deposition of high transparent and hard optical coating by tetraethylorthosilicate plasma polymerization
    Authors: M. Abbasi-Firouzjah, B. Shokri
    Year: 2020
    Citation: 12