Hailang Dai | Experimental methods | Best Researcher Award

Assist. Prof. Dr. Hailang Dai | Experimental methods | Best Researcher Award

Associate research fellow, Shanghai Jiao Tong University, China

Dr. Hailang Dai is an Associate Researcher at Shanghai Jiao Tong University and a rising expert in the fields of advanced optics, micro-lasers, and biomedical photonics. After completing his studies under the mentorship of renowned professors Xianfeng Chen and Zhuangqi Cao, Dr. Dai has become a pivotal figure in interdisciplinary research that merges optical technologies with medical applications. He has led and participated in numerous nationally funded projects, built the first interdisciplinary biomedical photonics laboratory at the university, and published over 50 high-impact research articles in journals like Physical Review Letters, Optics Letters, and Photonics Research.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Dai began his academic journey at the School of Physics and Astronomy at Shanghai Jiao Tong University, where he studied under esteemed mentors, laying a strong foundation in theoretical and experimental optics. Early in his career, he demonstrated outstanding academic potential, receiving multiple prestigious scholarships, including the National Scholarship, CICIFSA, and Huawei Scholarship. His deep curiosity in light–matter interactions and functional materials led him to focus on optoelectronic devices. His consistent excellence earned him admission to the highly competitive Shanghai Super Postdoctoral Talent Support Program, marking a significant step in his scholarly development.

🧪 Professional Endeavors

Dr. Dai’s professional path has been defined by interdisciplinary innovation and academic leadership. As an Associate Researcher and doctoral supervisor, he has guided research in advanced functional optoelectronics and biomedical optics. He established the first biomedical photonics laboratory at the Institute of Optical Science and Technology and has successfully led several China Postdoctoral Science Foundation projects. In collaboration with leading academics, he has contributed as first or co-author in top-tier journals. Dr. Dai is currently the Principal Investigator of the National Natural Science Foundation of China Youth Fund Project, showcasing his research leadership and forward-looking vision.

🔬 Contributions and Research Focus

Dr. Dai’s research has focused on micro-lasers, nonlinear optics, biomedical diagnostics, and integrated photonic devices. His groundbreaking work involves optical waveguides, high-Q cavities, and laser-based biomedical applications that address real-world challenges such as disease detection and therapeutic solutions. He uniquely combines optical science with biomedicine, exploring novel mechanisms for treating diseases using photonics-based technologies. His ability to connect fundamental physics with practical solutions has placed him at the forefront of interdisciplinary research, with work featured in journals like Physical Review Applied and Biomedical Optics Express.

🌍 Impact and Influence

Dr. Dai’s interdisciplinary research has had a transformational impact on the development of optical medical diagnostics and next-generation optoelectronic devices. His innovations in micro-laser technology and waveguide systems have contributed to both academic advancement and industrial application. His publications have been widely cited, reflecting the relevance and scientific merit of his work. Beyond his own research, he has inspired emerging scholars and helped shape a new generation of researchers in optical physics. His research bridges fundamental science and applied biomedical engineering, cementing his reputation as a pioneer in photonics-driven medical solutions.

📊 Academic Cites

Dr. Dai’s body of work is well-recognized in the academic community, garnering hundreds of citations across highly respected journals. His articles in Physical Review Letters, Nano Letters, Optics Express, and ACS Photonics are frequently cited by peers working in optics, material science, and biomedical engineering. This citation record underscores the broad applicability of his work and his standing as a credible, high-impact researcher. His collaborations with international scholars and consistent contributions to cutting-edge research ensure continued visibility and academic influence, positioning him as a thought leader in his interdisciplinary field.

🧠 Research Skills

Dr. Dai exhibits a wide spectrum of research skills including theoretical modeling, experimental design, nanofabrication, optical simulation, and biomedical instrumentation. His command of nonlinear optics, laser physics, and optical materials is complemented by his ability to integrate optical platforms into clinical research settings. He is adept in using tools such as COMSOL, Lumerical, and FDTD for photonic simulations. His ability to conceptualize and execute multidisciplinary projects makes him highly valuable in collaborative research. Furthermore, his experience in establishing laboratories and managing research teams showcases his strong leadership and project execution abilities.

📚 Teaching Experience

As a doctoral supervisor, Dr. Dai has actively mentored graduate students and postdoctoral researchers, integrating them into his research on micro-lasers and biophotonics. His teaching philosophy emphasizes hands-on learning, critical thinking, and interdisciplinary exploration. He has also contributed to curriculum development in photonics and optical instrumentation, and frequently delivers seminars and research talks within the university and at academic conferences. His mentorship has resulted in student-led publications and project awards, underlining his role in academic development. Dr. Dai continues to foster a supportive learning environment, cultivating future leaders in optics and biomedical science.

🏅 Awards and Honors

Dr. Dai’s academic journey is marked by prestigious accolades such as the Shanghai Super Postdoctoral Fellowship, National Scholarship, Huawei Scholarship, and the CICIFSA Doctoral Scholarship. He has also secured funding from the China Postdoctoral Science Foundation and is currently leading a Youth Fund Project from the National Natural Science Foundation of China. These recognitions not only highlight his scientific excellence but also acknowledge his dedication to national research goals. His consistent record of scholarships and grants reflects a career built on merit, innovation, and academic contribution.

🔮 Legacy and Future Contributions

Dr. Hailang Dai is well-positioned to leave a lasting legacy in the fields of biophotonics and functional optics. With an established research infrastructure and a growing team, his next steps likely involve expanding international collaboration, exploring AI-integrated optical diagnostics, and commercializing his biomedical technologies. His vision includes making optical solutions more accessible for healthcare diagnostics and pioneering next-generation optoelectronic materials. As a mentor, innovator, and leader, his ongoing work will continue to inspire future scientists and impact both academic research and real-world healthcare applications, making him a strong contender for prestigious global research awards.

Publications Top Notes

📄 High-quality factor in a symmetrical metal-cladding optical waveguide
  • Authors: Yi Lai, Zhangchi Sun, Dan Ru, Chenhuan Ding, Ling Ding, Chen Wang, Cenxin Luo, Hailang Dai, He Li

  • Journal: Journal of Nonlinear Optical Physics & Materials

  • Year: 2025

📄 Manipulation of Rare-Earth-Ion Emission by Nonlinear-Mode Oscillation in a Lithium Niobate Microcavity
  • Authors: Jiangwei Wu, Yuxuan He, Qilin Yang, Xueyi Wang, Xiangmin Liu, Yong Geng, Guangcan Guo, Qiang Zhou, Xianfeng Chen, Yuping Chen

  • Journal: Nano Letters

  • Year: 2025

📄 Analysis of the key signaling pathway of baicalin that induces autophagy in papillary thyroid cancer via an optical resonator
  • Authors: Yi Lai, Dan Ru, Chenhuan Ding, Chen Wang, Ling Ding, Cenxin Luo, Yujie Qi, Xianfeng Chen, Hailang Dai, He Li

  • Journal: Biomedical Optics Express

  • Year: 2025

📄 Ultralow-Threshold Lithium Niobate Photonic Crystal Nanocavity Laser
  • Authors: Xiangmin Liu, Chengyu Chen, Rui Ge, Jiangwei Wu, Xianfeng Chen, Yuping Chen

  • Journal: Nano Letters

  • Year: 2025

📄A Sixteen‐user Time‐bin Entangled Quantum Communication Network With Fully Connected Topology
  • Authors: Yiwen Huang, Zhantong Qi, Yilin Yang, Yuting Zhang, Yuanhua Li, Yuanlin Zheng, Xianfeng Chen

  • Journal: Laser & Photonics Reviews

  • Year: 2025

 

Suresh Kumar | Experimental methods | Best Researcher Award

Dr. Suresh Kumar | Experimental methods | Best Researcher Award

Associate Professor at MMEC, Maharishi Markandeshwar (Deemed to be University) Mullana | India

Dr. Suresh Kumar is an accomplished Associate Professor (Grade-II) at Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana. With over 11 years of post-Ph.D. experience, he is widely recognized for his research in nanomaterials, dilute magnetic semiconductors, and photocatalysis. A prolific researcher and educator, he has authored 51 research publications, holds six patents, and actively supervises PG and Ph.D. research. His academic presence is validated across platforms such as Scopus, Web of Science, Google Scholar, and Vidwan. He is deeply committed to institutional development, student mentorship, and innovative science education in India.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📘 Early Academic Pursuits

Dr. Suresh Kumar’s academic journey began with a B.Sc. in Non-Medical Sciences from Himachal Pradesh University in 1998. He further pursued M.Sc. Physics (2002), followed by B.Ed and M.Ed degrees, reinforcing his strong foundation in both science and education. His interest in research led him to complete an M.Phil in Physics, and later, a Ph.D. in Physics & Materials Science from Jaypee University of Information Technology in 2014. His doctoral work on transition metal-doped CdS nanofilms marked a turning point, setting the stage for a career rooted in cutting-edge nanotechnology and materials research.

💼 Professional Endeavors

Dr. Kumar has held various academic roles, beginning as a Lecturer in 2007, advancing through positions like Teaching Assistant, Assistant Professor, and Associate Professor. Currently serving at MM(DU), Mullana, his journey reflects a steady progression in leadership, teaching, and research responsibility. He has contributed to institutional quality enhancement by coordinating activities such as NAAC Criteria III, FDPs, curriculum revision, and lab management. His previous affiliations include Jaypee University of Information Technology, Kalpi Institute of Technology, and Shivalik Institute of Engineering & Technology, contributing across UG, PG, and Ph.D. levels.

🔬 Contributions and Research Focus

Dr. Suresh Kumar’s research revolves around II-VI semiconductors, dilute magnetic semiconductors (DMS), photovoltaics, and photocatalysis. His work has pioneered advancements in the green synthesis of nanomaterials, particularly using plant extracts for nanoparticle synthesis, and has practical applications in energy and environmental remediation. His six patents include innovations in nanostructured thin films, solar energy tools, and beekeeping equipment, demonstrating a clear alignment with sustainable and applied science. With consistent publications in indexed journals (WOS, Scopus) and supervision of multiple research scholars, Dr. Kumar’s contributions deeply influence emerging material science trends.

🌍 Impact and Influence

Dr. Kumar’s research has made a measurable global impact, evidenced by 665 citations on Google Scholar, 524 on Web of Science, and 471 on Scopus. His h-index ranges from 11 to 14, reflecting both quality and relevance of his work. He has guided multiple dissertations and Ph.D. theses, and his innovations in solar-powered devices and eco-friendly nanoparticle synthesis have real-world value. He is a regular speaker and session chair at international conferences, such as the Halich Congress, Turkey, and his leadership has helped shape young researchers’ careers, affirming his academic and scientific influence both nationally and abroad.

📚 Academic Cites and Recognition

Dr. Kumar’s scholarly visibility is reinforced through profiles on Google Scholar, Scopus, Web of Science, ORCID, ResearchGate, and Vidwan. His 51 peer-reviewed publications span reputed journals with a combined impact factor of 75.74. These platforms showcase his interdisciplinary reach, from nanotechnology and materials characterization to renewable energy innovations. His academic identity is globally recognized, and his works are often referenced in the domains of thin film physics, green nanotechnology, and semiconductors. This strong digital footprint cements his role as a credible and referenced authority in his research areas.

🧪 Research Skills

Dr. Kumar possesses advanced expertise in material synthesis and characterization techniques, including Chemical Bath Deposition (CBD), vacuum and spin coating, and tools such as XRD, SEM, AFM, TEM, UV-Vis-NIR, EDX, FTIR, and VSM. His experimental precision is matched by a theoretical understanding of optical, structural, and magnetic properties of nanomaterials. He has a strong command over green synthesis methods and is skilled at translating laboratory research into patents and prototypes. His versatile research abilities are applied across diverse sectors—energy, healthcare, agriculture, and education technology making him a valuable asset in interdisciplinary scientific exploration.

🎓 Teaching Experience

Dr. Kumar brings 17+ years of teaching experience, including over 11 years post-Ph.D., spanning UG, PG, and Ph.D. programs. At MM(DU), he teaches B.Sc. Physics (Honors), M.Sc. Physics, and Ph.D. coursework, while also mentoring research students. Known for his engaging, student-centered teaching style, he integrates technology (Moodle, Swayam MOOCs) and hands-on lab work to foster experiential learning. As Lab In-charge and academic coordinator, he ensures high standards in curriculum delivery and laboratory safety. His commitment to academic excellence and student mentorship is a hallmark of his teaching legacy.

🏆 Awards and Honors 

Dr. Suresh Kumar has received numerous accolades, such as the Chanakya Award 2024 and Indo-Global Education Excellence Award 2024 from ICERT. He was honored with a session headship at the Halich Congress, Turkey, and received a Teacher Innovation Award during the pandemic from Rakshita Welfare Society. Earlier in his career, he secured a Best Poster Prize at RTMS-2011 and was awarded a Research Assistantship during his Ph.D. His academic diligence also earned him a merit certificate during B.Ed. These recognitions affirm his dedication to innovation, research impact, and educational leadership.

🔮 Legacy and Future Contributions

Dr. Kumar’s legacy lies in his innovative, sustainable, and interdisciplinary research, as well as his devotion to student growth and institutional advancement. Looking ahead, he aims to secure international collaborations, government-funded research projects, and explore technology transfer opportunities for his patented innovations. He envisions contributing to national science missions through eco-friendly materials research, renewable energy systems, and academic policy reform. His future work will likely expand into translational research, benefiting industries and communities alike. Dr. Kumar’s trajectory marks him as a thought leader and changemaker in the realms of science, innovation, and education.

Publications Top Notes

Solvothermal synthesis of PVP-assisted CuS structures for sunlight-driven photocatalytic degradation of organic dyes

  • Authors: Vishal Dhiman, Suresh Kumar, Abhishek Kandwal, Pankaj Sharma, Ankush Thakur, Sanjay Kumar Sharma
    Journal: Physica B: Condensed Matter
    Year: 2025

Enhanced photoconversion efficiency in dye-sensitized solar cells through Ag and La modified ZnO photoanodes

  • Authors: Aman Kumar, Suresh Kumar, Virender Singh Kundu, Kirti Hooda, Anil Vohra, Suresh Kumar, Mohit Podia, Abhishek Kandwal, Praveen Vummadisetty Naidu
    Journal: Physica Scripta
    Year: 2025

Photocatalytic Activity of ZnO Nanostructures

  • Authors: Anu Kapoor, Naveen Kumar, Suresh Kumar
    Journal: Book Chapter – In: Advanced Nanomaterials for Environmental Applications (Taylor & Francis)
    Year: 2025

Green Synthesis of Nanoparticles using Pea Peel Biomass and Their Assessment on Seed Germination of Tomato, Chilli and Brinjal Crop

  • Authors: Anjali Kanwal, Bikram Jit Singh, Suresh Kumar, Rippin Sehgal, Sushil Kumar Upadhyay, Raj Singh
    Journal: Indian Journal of Agricultural Research
    Year: 2025

A comprehensive review of bismuth, lanthanum and strontium based double perovskites − Unravelling structural, magnetic, and dielectric properties

  • Authors: Jagadish Parsad Nayak, Rohit Jasrotia, Avi Kumar Sharma, Abhishek Kandwal, Pratiksha Agnihotri, Mika Sillanpää, Suman, M. Ramya, Vaseem Raja, Suresh Kumar, et al.
    Journal: Inorganic Chemistry Communications
    Year: 2024

 

Guangdi Zhao | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Guangdi Zhao | Experimental methods | Best Researcher Award

Associate professor at University of Science and Technology Liaoning | China

Guangdi Zhao is an associate professor and currently the associate dean of the School of Materials and Metallurgy. He serves as a doctoral supervisor with a strong academic foundation from Central South University, University of Chinese Academy of Sciences, and University of Science and Technology of China. Since beginning his career in 2017, Zhao has excelled in both research and academic leadership, building a reputable profile in materials science and engineering. His ongoing dedication to advancing metallurgical education and research reflects his commitment to scientific excellence and mentorship.

👨‍🎓Profile

Scopus 

ORCID

🎓 Early Academic Pursuits

Zhao’s academic journey started with a bachelor’s degree in materials science and engineering at Central South University, followed by a master’s in materials science at the University of Chinese Academy of Sciences, and culminated in a Ph.D. at the University of Science and Technology of China. Throughout his studies, he developed a strong foundation in metallurgical processes and materials characterization, which laid the groundwork for his future research. His early training focused on innovative materials design and engineering, preparing him for an impactful academic and research career.

🔬 Professional Endeavors

Since July 2017, Zhao has grown from an early-career researcher to a respected academic leader, currently holding the position of associate dean and doctoral supervisor. He has led 4 vertical and 2 horizontal research projects funded by prestigious sources, including the National Natural Science Foundation of China and provincial science foundations. Zhao also hosts educational reform projects at his institution, illustrating his dual focus on research innovation and teaching improvement. His role expands beyond research to academic leadership and mentoring young scientists.

🛠️ Contributions and Research Focus

Zhao’s research concentrates on materials science and metallurgy, particularly in developing and optimizing metallurgical processes and materials properties. He has published 17 SCI/EI papers as first or corresponding author in internationally recognized journals such as Materials Science & Engineering A and Journal of Alloys and Compounds. His work addresses critical challenges in casting, forging, and metallographic skills, emphasizing defect control, microstructure analysis, and innovative alloy design. Zhao’s contributions push the boundaries of materials engineering for practical industrial applications.

🌟 Impact and Influence

Guangdi Zhao has significantly impacted the materials science community through his research, publications, and mentorship. His leadership on multiple funded projects reflects recognition of his scientific expertise. As an associate dean and committee member in Liaoning Province’s casting and forging industry, he influences both academic and industrial practices. His students’ success in national competitions and his role on editorial boards for “Special Steel” and “CHINA FOUNDRY” amplify his influence, promoting high standards in both research and teaching.

📚 Academic Citations

With 17 SCI/EI-indexed publications, Zhao maintains a strong academic presence, contributing original research to top materials science journals. His first-author and corresponding-author roles in highly cited papers demonstrate leadership in research output. These works are frequently cited by peers, reflecting the relevance and impact of his findings in metallurgical science. Zhao’s growing citation record highlights his ongoing contribution to advancing knowledge and provides a solid foundation for future collaborative research and scholarly influence.

🧰 Research Skills

Zhao possesses advanced expertise in materials characterization, microstructure analysis, and metallurgical process optimization. His skills include designing experimental protocols for alloy development, mastering metallographic techniques, and utilizing scientific methods to improve casting and forging processes. He is proficient in leading multidisciplinary research teams, securing funding, and translating fundamental research into practical industrial applications. Zhao’s technical acumen and problem-solving abilities are key to his success in both research and mentoring.

🎓 Teaching Experience

As an associate professor and doctoral supervisor, Zhao demonstrates strong commitment to education. He has won awards such as the Quality Classroom Award and provincial recognition for excellence in guiding students, particularly in metallographic skills competitions. Zhao actively develops and reforms educational programs, aiming to enhance student learning experiences in materials science. His hands-on mentorship helps students excel academically and competitively, fostering a new generation of researchers with robust technical and theoretical knowledge.

🏅 Awards and Honors

Zhao’s achievements have been recognized through numerous honors, including the prestigious “Hundred, Thousand, Thousand Talents Project” and “Ten Thousand” level candidate status in Liaoning Province. He has received the third prize in the Liaoning Provincial Teacher Teaching Innovation Competition, the Quality Classroom Award, and provincial-level Excellent Guidance Teacher accolades. Additionally, Zhao earned the third prize of Liaoning Provincial Natural Science Academic Achievement Award, underscoring his research excellence and educational impact at both provincial and institutional levels.

🔮 Legacy and Future Contributions

Guangdi Zhao’s legacy is grounded in his dedication to advancing metallurgical science through high-impact research, leadership, and mentorship. As associate dean, he shapes academic policies and fosters innovation in materials education. Zhao’s future contributions are expected to expand international collaborations, explore novel alloy systems, and enhance industrial applications of his research. His commitment to student development ensures a lasting impact on the next generation of scientists, positioning him as a leading figure in China’s materials science community.

Publications Top Notes

  • Title: Effect of homogenization treatment on the microstructure evolution and hot deformation behavior of hard-deformed superalloy GH4975
    Authors: Zhao Guangdi, Zang Ximin, Sun Yixuan, Xin Xin, Li Xue, Wang Lide, Wang Li
    Journal: Materials Science and Engineering: A
    Year: 2025

  • Title: Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li
    Authors: Guangdi Zhao, Ximin Zang, Yuan Jing, Nan Lü, Jinjiang Wu
    Journal: Materials Science and Engineering: A
    Year: 2021

  • Title: Microstructure and hot ductility behavior of Ni-based superalloy U720Li with boron addition
    Authors: Guang-Di Zhao, Fang Liu, Xi-Min Zang, Wen-Ru Sun
    Journal: Rare Metals
    Year: 2021

  • Title: Role of carbon in modifying solidification and microstructure of a Ni-based superalloy with high Al and Ti contents
    Authors: Guang-di Zhao, Xi-min Zang, Wen-ru Sun
    Journal: Journal of Iron and Steel Research International
    Year: 2021

Wang Hay Kan | Data Analysis Techniques | Best Researcher Award

Prof. Wang Hay Kan | Data Analysis Techniques | Best Researcher Award

Associate Researcher at China Spallation Neutron Source | China

Dr. Wang Hay (Jack) Kan is an accomplished Associate Professor at the China Spallation Neutron Source (CSNS), Institute of High Energy Physics, Chinese Academy of Sciences. With a research portfolio spanning solid-state chemistry, neutron scattering, and energy materials, he is recognized for advancing the field of energy storage and conversion. Holding a PhD from the University of Calgary, Dr. Kan combines academic rigor with real-world innovation, reflected in over 90 peer-reviewed publications, numerous patents, and extensive international collaborations. His research integrates in-situ neutron/X-ray techniques with advanced material design, making him a vital figure in next-gen energy solutions.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Kan’s academic path began with a First-Class Honors B.Sc. in Chemistry from HKUST, where he studied metal-organic frameworks under Prof. Ian D. Williams. He then pursued a Master’s at the University of Waterloo under the guidance of Prof. Linda Nazar, focusing on LiMPO₄ cathode materials. His academic excellence continued with a PhD in Chemistry from the University of Calgary, where he developed mixed conductors for SOFCs under Prof. V. Thangadurai. These formative years established his foundation in solid-state electrochemistry, crystallography, and materials engineering—skills critical for his later breakthroughs in energy storage research.

👨‍💼 Professional Endeavors

Dr. Kan has served as an Associate Professor at CSNS since 2015 and held visiting scientist positions at prestigious institutions like Lawrence Berkeley National Lab, ANSTO, and HKUST. He also served as Guest Professor at Beijing Jiaotong University and Tianjin University, contributing to both research and graduate mentorship. His professional journey blends academic research, national lab collaboration, and industry partnerships with leaders like CATL. His leadership extends to graduate advising, technical committee service, and international conference organization, showcasing a comprehensive contribution to both scientific advancement and institutional development.

🔬 Contributions and Research Focus

Dr. Kan’s research centers on energy materials, including lithium/sodium-ion batteries, solid oxide fuel cells (SOFCs), and neutron diffraction techniques. He is an expert in in-situ structural characterization, focusing on meta-stable phases, oxygen redox reactions, and high-capacity cathode design. He pioneered novel composite materials such as Li-rich rock-salt oxides and dual-polyanion cathodes, contributing significantly to electrochemical innovation. Through his patents and publications, he has developed advanced electrolytes, neutron scattering hardware, and regeneration strategies for aged batteries, positioning himself as a leading materials chemist bridging basic science and application.

🌍 Impact and Influence

With an h-index of 35 and over 4400 citations, Dr. Kan’s work has shaped the fields of battery chemistry and neutron-based materials analysis. His leadership in establishing the Platform for Electrochemical and Neutron Studies (PANs) at CSNS has enabled transformative research infrastructure in China. His lectures across institutions in the USA, Australia, Korea, and China, and collaborations with SSRL and ANSTO, demonstrate global recognition. He has significantly influenced graduate education, national science policy, and industry research directions through his funding projects, reviews, and committee roles. Dr. Kan is considered a bridge between fundamental discovery and industrial impact.

📚 Academic Cites

Dr. Kan has authored over 90 peer-reviewed articles in high-impact journals including JACS, Angewandte Chemie, RSC Advances, and J. Mater. Chem. A. His Google Scholar profile (h-index: 35, 4449 citations) reflects a growing influence, particularly in solid-state ionics and battery materials. His most cited works span from early contributions on LiFePO₄ morphology to recent innovations in Li-rich and dual-polyanion cathodes. He has also contributed chapters and conference abstracts to major symposia, cementing his role as a thought leader in electrochemical energy storage and neutron scattering applications.

🛠️ Research Skills

Dr. Kan excels in neutron diffraction, synchrotron X-ray scattering, electrochemistry, solid-state synthesis, and Rietveld refinement. He has developed novel in-situ cells for high-temperature and hydrothermal neutron scattering. His work involves crystal structure elucidation, electrical conductivity measurement, and catalytic performance evaluation under operando conditions. His facility with advanced instrumentation allows him to bridge microscopic structure with macroscopic performance in materials. Equally skilled in computational modeling, spectroscopy, and thermochemistry, Dr. Kan’s methodological versatility underpins his ability to innovate across disciplines.

🧑‍🏫 Teaching Experience

Dr. Kan has taught both undergraduate and graduate courses on energy storage and conversion systems at Beijing Jiaotong, Tianjin, and Foshan Universities. Earlier, he served as a teaching assistant at the University of Calgary and University of Waterloo, covering general, transition metal, and main group chemistry, as well as nanotechnology. His mentorship extends to graduate supervision, lab-based research training, and international collaboration guidance. He’s an active advisor and student chapter chair at CSNS, nurturing the next generation of electrochemists and materials scientists through an integrative and research-oriented pedagogy.

🏆 Awards and Honors

Dr. Kan has received over 30 awards, including the Ludo Frevel Crystallography Award, Young Research Fellowship (Asia-Oceania Neutron Scattering Association), and the Innovation Achievement Award from the Industrial Research Society of China. Notably, he received the Best Thesis Award at the 9th National Neutron Scattering Conference in 2023. He has been funded by NSFC, MOST, and provincial talent programs, highlighting his national recognition. His consistent award record from 2006 to 2025 reflects both academic excellence and sustained research impact, supported by international travel grants, fellowships, and scholarships.

🧭 Legacy and Future Contributions

Dr. Kan’s legacy is rooted in pioneering work at the interface of energy materials and neutron science. By establishing platforms like PANs, advancing in-situ techniques, and mentoring future scientists, he is shaping the next era of electrochemical research. His upcoming projects on hard carbon anodes and sodium-ion batteries will deepen understanding of ion transport and storage mechanisms. Through ongoing collaborations with industry leaders like CATL and national labs, Dr. Kan will continue driving innovation in energy sustainability. His trajectory promises enduring contributions to science, technology, and environmental resilience.

Publications Top Notes

High-Entropy V-Based Null Matrix Alloys─Short/Long-Range Structural Features, Chemical Stabilities, and Mechanical Properties

  • Authors: Man He, Chen Wang, Hua Yang, Dong-Ying Wu, Jey-Jau Lee, Xuan Huang, Hao Shen, Fangwei Wang, Maxim Avdeev, Wang Hay Kan
    Journal: ACS Applied Materials & Interfaces
    Year: 2025

A prismatic alkali-ion environment suppresses plateau hysteresis in lattice oxygen redox reactions

  • Authors: Hao Yu, Ang Gao, Xiaohui Rong, Shipeng Shen, Xinqi Zheng, Liqin Yan, Haibo Wang, Dan Su, Zilin Hu, Wang Hay Kan et al.
    Journal: Energy & Environmental Science
    Year: 2024

A Family of V-Based Null Matrix Alloys with Atomic and Mesoscopic Homogeneity

  • Authors: Man He, Chen Wang, Hua Yang, Dong-Ying Wu, Jey-Jau Lee, Fangwei Wang, Maxim Avdeev, Wang Hay Kan
    Journal: ACS Applied Engineering Materials
    Year: 2024

Author Correction: Stabilization of layered lithium-rich manganese oxide for anion exchange membrane fuel cells and water electrolysers

  • Authors: Xuepeng Zhong, Lijun Sui, Menghao Yang, Toshinari Koketsu, Malte Klingenhof, Sören Selve, Kyle G. Reeves, Chuangxin Ge, Lin Zhuang, Wang Hay Kan et al.
    Journal: Nature Catalysis
    Year: 2024

Stabilization of layered lithium-rich manganese oxide for anion exchange membrane fuel cells and water electrolysers

  • Authors: Xuepeng Zhong, Lijun Sui, Menghao Yang, Toshinari Koketsu, Malte Klingenhof, Sören Selve, Kyle G. Reeves, Chuangxin Ge, Lin Zhuang, Wang Hay Kan et al.
    Journal: Nature Catalysis
    Year: 2024

 

Kun Xiao | Data Analysis Techniques | Best Researcher Award

Prof. Kun Xiao | Data Analysis Techniques | Best Researcher Award

Professor at East China University of Technology | China

Professor Xiao Kun is a distinguished academic and researcher at the East China University of Technology, affiliated with the School of Geophysics and Measurement-Control Technology. With a career dedicated to advancing geophysical exploration, especially in unconventional energy resources and machine learning applications, Professor Xiao has earned national acclaim as a young scientific and technological talent and leading academic figure in Jiangxi Province. His professional journey is marked by innovation, academic leadership, and technical excellence, making him a significant contributor to China’s scientific community.

👨‍🎓Profile

Scopus

ORCID

🎓 Early Academic Pursuits

Professor Xiao embarked on his academic path at the China University of Geosciences (Beijing), where he majored in Geodetection and Information Technology. He completed his Ph.D. in Engineering in July 2015, laying a strong foundation in geophysics. His doctoral work focused on gas hydrate reservoir simulation and geophysical logging, an area he would continue to specialize in throughout his career.

👨‍🏫 Professional Endeavors

Since 2015, Professor Xiao has been affiliated with the East China University of Technology, progressing through the ranks from Lecturer to Associate Professor, and most recently to Professor in 2024. His work encompasses both teaching and advanced scientific research in geophysical exploration, with a strong focus on field experiments, numerical simulations, and interdisciplinary applications.

🔬 Contributions and Research Focus

Professor Xiao Kun’s core research centers on geophysical theory and method development, with a strong emphasis on the exploration of unconventional energy resources such as gas hydrates, coalbed methane (CBM), and shale gas. He specializes in applying machine learning techniques to geophysical logging and lithology identification, as well as conducting petrophysical property analysis and numerical simulations of complex reservoirs. He has successfully led over 20 major research projects funded by esteemed institutions including national key programs and provincial science foundations.

🌍 Impact and Influence

Professor Xiao Kun is a recognized thought leader in China’s geophysical research community, actively contributing as a communication review expert for prestigious institutions such as the Changjiang Scholars Program and the National Natural Science Foundation of China (NSFC). He also supports several provincial science and technology panels, reinforcing his role in shaping research directions. His expertise has had a significant impact on energy exploration policies, geophysical education, and the development of research strategies across various regions in China.

📚 Academic Citations and Publications

Professor Xiao has published over 60 academic papers, with more than 30 indexed by SCI/EI, spanning leading journals such as Geophysics, Acta Geophysica, Journal of Geophysics and Engineering, and Scientific Reports. His work has been cited across various scientific domains, highlighting his interdisciplinary impact in applied geophysics and data-driven modeling.

He has also authored one academic monograph, solidifying his contributions in the form of scholarly literature, and secured six national invention patents and six software copyrights.

🧠 Research Skills and Technical Expertise

Professor Xiao Kun possesses exceptional technical expertise in numerical modeling, reservoir simulation, and well-logging analysis, with a strong command of machine learning algorithms such as ensemble learning and extreme learning machines. His proficiency in multiphysics data integration and high-performance scientific computing empowers him to tackle complex subsurface challenges. These advanced skills allow him to develop innovative solutions in geophysical exploration, significantly contributing to energy sustainability research and the evolution of data-driven geoscience methodologies.

👨‍🏫 Teaching Experience

In addition to his research, Professor Xiao has over 9 years of teaching experience in undergraduate and postgraduate programs, mentoring students in geophysical methods, logging technologies, and scientific computing. He has also guided students to win three national competition awards, showing his dedication to academic mentorship and talent cultivation.

🏅 Awards and Honors

Professor Xiao Kun has received numerous prestigious accolades that highlight his national recognition and academic leadership. He was honored as a “Young Scientific and Technological Talent” by the Ministry of Natural Resources in 2023 and named a finalist for the “National Good Youth with Positive Energy” in 2022. As a Leading Academic Leader in Jiangxi Province, he also serves on editorial boards of top journals and is an active member of key scientific committees, demonstrating his broad influence in geophysical research and governance.

🚀 Legacy and Future Contributions

Professor Xiao Kun is poised to shape the next generation of geophysical research in China and beyond. His pioneering integration of AI-driven methodologies with traditional geophysical exploration techniques signifies a transformative advancement in the field. Looking ahead, his research is expected to play a vital role in areas such as green energy resource evaluation, AI-geoscience fusion, and data-driven decision-making in complex subsurface environments. With a strong foundation in both applied research and academic mentorship, Professor Xiao is committed to driving innovation, strengthening international research collaboration, and advancing the frontiers of scientific excellence in geophysics.

Top Noted Publications

Study on logging identification of sandstone-type uranium deposits based on ensemble learning in the Songliao Basin in Northeast China

  • Authors: Kun Xiao, Yichen Xu, Yaxin Yang, et al.
    Journal: Nuclear Science and Engineering
    Year: 2025

Numerical simulation of resistivity and saturation estimation of pore-type gas hydrate reservoirs in the permafrost region of the Qilian Mountains

  • Authors: Xudong Hu, Changchun Zou, Zhen Qin, Hai Yuan, Guo Song, Kun Xiao (Corresponding author)
    Journal: Journal of Geophysics and Engineering
    Year: 2024

Research progress on lithologic logging evaluation of uranium ore layers based on machine learning

  • Authors: Kun Xiao, Changwei Jiao, Yaxin Yang, et al.
    Journal: Science Technology and Engineering
    Year: 2025

Experimental study of relationship among acoustic wave, resistivity and fluid saturation in coalbed methane reservoir

  • Authors: Kun Xiao, Zhongyi Duan, Yaxin Yang, et al.
    Journal: Acta Geophysica
    Year: 2023

Automatic lithology identification of sandstone-type uranium deposit in Songliao Basin based on ensemble learning

  • Authors: Zhongyi Duan, Kun Xiao, Yaxin Yang, et al.
    Journal: Atomic Energy Science and Technology
    Year: 2023

 

Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Prof. Sheng Hsiung Chang | Experimental methods | Best Researcher Award

Professor at National Taiwan Ocean University | Taiwan

Dr. Sheng Hsiung Chang is a Professor at the National Taiwan Ocean University. His extensive career in academia and research is marked by significant roles in leading institutions such as Chung Yuan Christian University (CYCU) and National Central University. Dr. Chang’s work has spanned across several pivotal research areas, particularly in semiconductor physics, optical physics, and perovskite optoelectronic devices. His achievements not only demonstrate his technical expertise but also highlight his commitment to academic leadership, mentorship, and advancing scientific knowledge.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Dr. Chang’s academic journey began with his postdoctoral research roles, first at Academia Sinica (2008-2010) and later at National Central University (2010-2012), where he gained foundational experience in semiconductor and optical physics. During these early years, he developed a strong interest in light-material interactions and functional thin films, fields that would shape his future research directions. His foundational work in nanotechnology and optoelectronics established the groundwork for his later academic and research career.

Professional Endeavors 🌍

Dr. Chang has held pivotal roles in academia, including Associate Professor and Professor at CYCU, where he also served as the Director of the Career Service Center (2020-2021). These positions reflect his commitment to fostering both the research and professional development of students. Additionally, he has contributed to the scientific community as an Editorial Board Member for journals such as Nanotechnology and Physics Bimonthly.

He has also demonstrated leadership in academic societies, serving as Vice Chairman (2021-2024) and Secretary General (2019-2020) of the Taiwan Vacuum Society. This involvement shows his dedication not only to research but also to promoting collaboration and innovation within the scientific community.

Contributions and Research Focus 🔬

Dr. Chang’s research is centered around perovskite optoelectronic devices, light-material interactions, plasmonic devices, nonlinear optics, and functional thin films. He is currently the Principal Investigator for various research projects funded by the National Science and Technology Council (NSTC) and the Ministry of Science and Technology (MOST). His groundbreaking work on perovskite thin films and their applications in photovoltaic cells is pushing the boundaries of renewable energy technologies. Through projects that explore optical coupling, material interfaces, and energy harvesting, Dr. Chang’s research is expected to revolutionize the optoelectronics field.

Impact and Influence 🌍

Dr. Chang’s contributions to the scientific community have had far-reaching implications, particularly in the area of perovskite solar cells. His work on improving photovoltaic performance and investigating interfacial contacts between organic and inorganic materials has the potential to enhance solar cell efficiency and sustainability. He is a key player in advancing technologies related to energy conversion, helping to foster sustainable solutions to global energy challenges. His leadership roles in academic societies have also expanded his influence and outreach in the scientific community.

Academic Citations 📈

Dr. Chang has an impressive publication record, with recent articles in high-impact journals such as Nanotechnology, Synthetic Metals, and Materials Science in Semiconductor Processing. His work is frequently cited by fellow researchers in the field of optoelectronics, particularly his studies on perovskite materials and their optical properties. These citations underscore the significance and influence of his research in both academia and industry.

Research Skills 🧑‍🔬

Dr. Chang possesses an extensive skill set in semiconductor physics, optical physics experiments, and theoretical computations. His research involves complex techniques such as material synthesis, thin film fabrication, and optical characterization. He has a deep understanding of light-matter interactions and their application to next-generation devices like solar cells and plasmonic devices. Additionally, his ability to bridge experimental techniques with theoretical models allows him to tackle complex challenges in material design and optoelectronic applications.

Teaching Experience 🏫

In his roles as a Professor and Associate Professor, Dr. Chang has mentored numerous graduate and postgraduate students in their research pursuits. His teaching approach is centered around encouraging critical thinking, innovation, and hands-on experimentation. His experience in guiding students and fostering academic growth aligns with his belief in the importance of collaboration and mentorship within academic settings. He also plays an active role in career development, helping students transition into the professional world with a strong foundation in research and industry-related skills.

Awards and Honors 🏆

Throughout his career, Dr. Chang has been the recipient of several prestigious awards and honors, recognizing his contributions to the fields of optical physics, semiconductor research, and perovskite optoelectronics. His ongoing recognition as a leader in nanotechnology and materials science reflects his consistent pursuit of excellence in both academic research and scientific innovation.

Legacy and Future Contributions 🔮

Dr. Chang’s work is poised to leave a lasting impact on the scientific community, particularly in the field of renewable energy and optoelectronics. As the principal investigator of major research projects, he is advancing the efficiency and sustainability of perovskite-based technologies, paving the way for affordable and efficient solar energy solutions. Dr. Chang’s future contributions to nanomaterials and functional thin films will likely continue to inspire scientific innovation, technological advancements, and environmental sustainability for years to come.

Publications Top Notes

Long room-temperature valley lifetimes of localized excitons in MoS2 quantum dots

  • Authors: H. Wang, Y. Chen, T.Y. Pan, Y. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Structural and excitonic properties of the polycrystalline FAPbI3 thin films, and their photovoltaic responses

  • Authors: Y. Huang, I.J. Yen, C. Tseng, A. Chandel, S.H. Chang
    Journal: Nanotechnology
    Year: 2024

Observations of two-dimensional electron gases in AlGaN/GaN high-electron-mobility transistors using up-converted photoluminescence excitation

  • Authors: Y. Chen, L. Chen, C.B. Wu, Y.J. Lee, J. Shen
    Journal: Optics Express
    Year: 2024

Efficient Optical Coupling between Dielectric Strip Waveguides and a Plasmonic Trench Waveguide

  • Authors: J. Wu, A. Chandel, C. Chuang, S.H. Chang
    Journal: Photonics
    Year: 2024

Enhancing the photovoltaic responses of MAPbI3 poly-crystalline perovskite films via adjusting the properties of PEDOT:PSS hole transport material with a low-polarity solvent treatment process

  • Authors: C. Tsai, S.N. Manjunatha, M. Sharma, L.B. Chang, C. Chang
    Journal: Materials Science in Semiconductor Processing
    Year: 2024

 

Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Mrs. Ramadevi Suguru Pathinti | Experimental methods | Best Researcher Award

Research Scholar at National Institute of Technology Warangal | India

Ramadevi Suguru Pathinti is currently pursuing her Ph.D. in Physics at the National Institute of Technology, Warangal, India, specializing in Materials Science with a focus on soft matter research. Her academic journey spans from her M.Sc. in Physics to her ongoing doctoral studies. Ramadevi has made significant contributions in the field of nanomaterials and smart materials, particularly in integrating liquid crystals with metal oxides for the development of advanced gas sensors and UV photodetectors.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Ramadevi’s academic journey began at Rayalaseema University, Kurnool, India, where she pursued her M.Sc. in Physics with a specialization in Electronics, securing a CGPA of 9.1/10. She also holds a B.Sc. in Mathematics, Physics, and Computer Science. Her strong academic foundation laid the groundwork for her pioneering research in Materials Science during her doctoral studies at NIT, Warangal.

Professional Endeavors 💼

In her professional journey, Ramadevi has excelled in scientific research within both academic and industrial contexts. She has contributed to the development of thin film devices for smart window technologies, gas sensors, and photodetectors. Her Ph.D. research focuses on integrating liquid crystal-functionalized metal oxides to enhance the optical properties and responsivity of sensors, enabling advancements in environmental sensing and optoelectronic devices.

Contributions and Research Focus 🔬

Ramadevi’s research is centered on the synthesis of nanomaterials and their integration into innovative smart materials. She has worked extensively on fabricating gas sensors and UV photodetectors using liquid crystal-metal oxide hybrids. Notably, her work on smart windows is groundbreaking, where she has discovered novel optical switching behaviors and light modulation techniques, paving the way for energy-saving technologies. Furthermore, her synthesis methods like sol-gel and hydrothermal techniques have contributed to enhanced material properties for sensing applications.

Impact and Influence 🌍

Her research has already made a considerable impact in the fields of environmental sensing and smart material development, particularly in the energy-efficient technologies sector. Ramadevi’s work has the potential to revolutionize how we detect gases, modulate light, and develop self-powered sensors, with applications ranging from smart windows to sensitive environmental monitoring systems. Through her research, she aims to bring forth sustainable technologies that are adaptable to changing global needs.

Academic Cites 📚

Ramadevi has authored several impactful publications in top-tier peer-reviewed journals, contributing to the fields of materials science and optoelectronics. Her articles in journals like the Journal of Molecular Liquids, Journal of Alloys and Compounds, and Advanced Material Technology have contributed to the scientific community’s understanding of the integration of nanomaterials and liquid crystals for innovative devices. She has also presented her research at national and international conferences, further strengthening her academic profile.

Research Skills 🛠

Ramadevi has developed extensive technical expertise in nanomaterial synthesis using methods like sol-gel and hydrothermal techniques. She is proficient in device fabrication, particularly thin film devices for gas sensing and UV photodetector applications. Additionally, she has hands-on experience with advanced research instruments, including optical polarizing microscopes, fluorescence microscopes, and spin coating systems, which enhance her ability to conduct high-quality research and device development.

Teaching Experience 📚

In addition to her research, Ramadevi has taught practical sessions for both M.Sc. (Tech) Physics and B.Tech students. She has handled laboratory work, where she imparted valuable knowledge on experimental techniques and device characterization to budding scientists. This experience has helped her develop strong interpersonal and communication skills, which are essential for future academic and industrial collaborations.

Awards and Honors 🏆

Ramadevi’s excellence has been acknowledged through the Joint CSIR-UGC National Eligibility Test (NET) for Junior Research Fellowship (JRF) in 2017, where she secured an impressive All India Rank of 57. This achievement is a testament to her academic aptitude and research potential.

Legacy and Future Contributions 🌟

Looking forward, Ramadevi aims to make lasting contributions to the field of materials science and nanotechnology. Her research is poised to drive innovations in smart materials, sustainable technologies, and energy-efficient devices, with far-reaching implications for environmental sensing, smart window technologies, and optoelectronics. With her interdisciplinary approach and collaborative nature, she is well-positioned to make significant advancements in both academic and industrial research.

Publications Top Notes

Label-free detection of Aβ-42: a liquid crystal droplet approach for Alzheimer’s disease diagnosis

  • Authors: Saumya Ranjan Pradhan, Ramadevi Suguru Pathinti, Ramesh Kandimalla, Krishnakanth Chithari, Madhava Rao Veeramalla N., Jayalakshmi Vallamkondu
    Journal: RSC Advances
    Year: 2024

Enhanced ethanol gas detection using TiO2 nanorods dispersed in cholesteric liquid crystal: Synthesis, characterization, and sensing performance

  • Authors: Ramadevi Suguru Pathinti, Sunil Gavaskar Dasari, Buchaiah Gollapelli, Sreedevi Gogula, Ramana Reddy M.V., Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2024

Enhanced security through dye-doped cholesteric liquid crystal shells for anti-counterfeiting

  • Authors: Chris Mathew, Ramadevi Suguru Pathinti, Saumya Ranjan Pradhan, Buchaiah Gollapelli, Krishnakanth Chithari, Mrittika Ghosh, Ashok Nandam, Jayalakshmi Vallamkondu
    Journal: Optical Materials
    Year: 2024

ZnO nanoparticles dispersed cholesteric liquid crystal based smart window for energy saving application

  • Authors: Ramadevi Suguru Pathinti, Arun Kumar Tatipamula, Jayalakshmi Vallamkondu
    Journal: Journal of Alloys and Compounds
    Year: 2023

Energy saving, transparency changing thermochromism in dye-doped cholesteric liquid crystals for smart windows

  • Authors: Ramadevi Suguru Pathinti, Buchaiah Gollapelli, Saumya Ranjan Pradhan, Jayalakshmi Vallamkondu
    Journal: Journal of Photochemistry and Photobiology A: Chemistry
    Year: 2023

 

Jianwen Yang | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Jianwen Yang | Experimental methods | Best Researcher Award

Associate Professor, Master’s Supervisor, Deputy Head of the Physics Department at Shanghai Normal University | China

Dr. Jianwen Yang is an Associate Professor at Shanghai Normal University, holding a Ph.D. in Physical Electronics from Fudan University. His primary research focus lies in oxide semiconductors and information display technologies. With significant experience in addressing instability issues in industrial devices, he has contributed to analyzing the performance of a-IGZO TFTs in companies like TSMC and AUOtronics. His innovative work in n-type tin oxide-based TFTs and indium-free doped tin oxide-based TFTs has led to breakthroughs in the field, providing devices with superior electrical characteristics.

👨‍🎓Profile

Scopus

ORCID

Early Academic Pursuits 📚

Dr. Yang’s academic journey began with a solid foundation in Physical Electronics, completing his Ph.D. at Fudan University. During his early studies, he developed a keen interest in the intersection of material science and electronics, which led him to explore oxide thin-film transistors (TFTs) as a promising avenue for future advancements. His focus on new materials and material simplification laid the groundwork for his later innovations in tin oxide-based TFTs, a critical area in the development of modern information display technologies.

Professional Endeavors 💼

Dr. Yang’s professional career has been marked by collaborations with prominent industry leaders like TSMC and AUOtronics, where he contributed to solving the instability challenges in industrialized a-IGZO TFTs. These efforts have provided valuable insights into the performance optimization of thin-film transistors, further driving the industry forward. His participation in national projects, such as those funded by the National Natural Science Foundation of China (NSFC), also highlights his commitment to advancing the field through both academic research and real-world applications.

Contributions and Research Focus 🔬

Dr. Yang’s pioneering research in n-type tin oxide-based TFTs led to the introduction of novel indium-free doped tin oxide materials like SnWO, SnSiO, and SnNiO, which have all exhibited superior electrical characteristics. His work on comparing top/bottom-gate a-IGZO TFTs under varying stress conditions provided valuable insights into threshold voltage shifts and carrier concentration variations, significantly impacting the design and stability of oxide semiconductors in practical applications. He has consistently pushed the boundaries of material research, particularly in the flexible electronics sector.

Impact and Influence 🌍

Dr. Yang’s groundbreaking research has had a profound impact on the development of oxide semiconductor devices, particularly in TFT technology. His innovative approaches have been cited in multiple review articles, and his work continues to influence both academic researchers and industry practitioners. His research on indium-free tin oxide-based TFTs has not only enriched academic literature but also paved the way for more sustainable and efficient solutions in the information display industry. The superior electrical characteristics of his materials have positioned them as viable alternatives to traditional indium-based materials, which are costly and scarce.

Academic Cites 📈

Dr. Yang has published over 38 journals in top-tier scientific databases, including SCI and Scopus, with his work receiving 11 citations. His innovative research has been referenced in numerous review articles, further establishing him as a thought leader in his field. These citations reflect the widespread recognition of his research’s significance, and his publications continue to influence the academic community’s understanding of oxide semiconductors and TFT stability.

Research Skills 🛠️

Dr. Yang’s research skills span a wide range of disciplines, from material science to electronic device engineering. His expertise in thin-film transistor design, instability analysis, and new material development has allowed him to push the envelope in semiconductor research. He is particularly skilled in analyzing the electrical performance of TFTs under various stress conditions, demonstrating an acute understanding of the intricate relationship between material properties and device functionality. Additionally, his work in flexible electronics is a testament to his ability to innovate in emerging areas.

Teaching Experience 👩‍🏫

As an Associate Professor at Shanghai Normal University, Dr. Yang has been involved in educating and mentoring the next generation of scientists and engineers. He brings his extensive research experience into the classroom, enriching students’ learning experiences. Dr. Yang’s teaching focuses on semiconductor physics, material science, and electronics. His dedication to student development is evident in his guidance of graduate students and the collaborative environment he fosters for academic exploration.

Awards and Honors 🏅

Dr. Yang’s contributions have been recognized by several prestigious national research organizations, including the National Natural Science Foundation of China. His research projects, such as the Study on the Instability of Flexible Amorphous SnSiO Thin Film Transistors, have earned him respect in the academic community and have helped elevate Shanghai Normal University‘s status in the field of electronic materials research.

Legacy and Future Contributions 🔮

Dr. Yang’s research legacy lies in his innovative contributions to oxide semiconductor technology and his dedication to finding sustainable solutions for the electronics industry. His ongoing research projects, including his work on the 345GHz Submillimeter Wave Sideband Separation Receiver for LCT Telescope, show his commitment to exploring cutting-edge technologies. Moving forward, Dr. Yang plans to continue refining indium-free tin oxide-based TFTs and explore their industrial scalability. His work has the potential to impact a variety of industries, from flexible displays to advanced sensors, shaping the future of electronic materials.

Publications Top Notes

Exploring soil-buoyancy interactions: experimental designs and educational implications for enhancing students’ scientific inquiry skills

  • Authors: Zijian Gu, Jianwen Yang
    Journal: Physics Education
    Year: 2025

Fast-response IWO/Si heterojunction photodetectors

  • Authors: Xiaochuang Dai, Jianwen Yang, Huishan Wang, Yunxi Luo, Jinying Zeng, Wangzhou Shi, Feng Liu
    Journal: Journal of Physics D: Applied Physics
    Year: 2025

Enhancement of electrical characteristics of SnGaO thin-film transistors via argon and oxygen plasma treatment

  • Authors: Yinli Lu, Xiaochuang Dai, Jianwen Yang, Ying Liu, Duo Cao, Fangting Lin, Feng Liu
    Journal: Vacuum
    Year: 2024

Preparation of chalcogenide perovskite SrHfS3 and luminescent SrHfS3:Eu2+ thin films

  • Authors: Yanbing Han, Jiao Fang, Yurun Liang, Han Gao, Jianwen Yang, Xu Chen, Yifang Yuan, Zhifeng Shi
    Journal: Applied Physics Letters
    Year: 2024

Degradation Behavior of Etch-Stopper-Layer Structured a-InGaZnO Thin-Film Transistors Under Hot-Carrier Stress and Illumination

  • Authors: Dong Lin, Wan-Ching Su, Ting-Chang Chang, Hong-Chih Chen, Yu-Fa Tu, Kuan-Ju Zhou, Yang-Hao Hung, Jianwen Yang, I-Nien Lu, Tsung-Ming Tsai et al.
    Journal: IEEE Transactions on Electron Devices
    Year: 2021

 

 

Sanjiv Kane | Experimental methods | Best Innovation Award

Mr. Sanjiv Kane | Experimental methods | Best Innovation Award

Scientific Officer at Raja Ramanna Centre for Advanced Technology | India

A Distinguished Scientific Officer in Applied Physics and Synchrotron Radiation

Sanjiv R. Kane is an experienced Scientific Officer with over 25 years of expertise in applied physics, particularly in synchrotron radiation and advanced instrumentation. He is currently pursuing a Ph.D. in Applied Physics at the Maharaja Sayajirao University of Baroda (2023–Present), focusing on advancing the fields of control systems, data acquisition software, and beamline technology. His proven experience spans across several prominent research facilities, including the Indus Synchrotron Facility and CERN, where he has contributed immensely to both research and technology development.

👨‍🎓Profile

Google scholar

Scopus

ORCID

📚 Early Academic Pursuits

Sanjiv started his academic journey by earning a Bachelor of Science in Physics with minors in Mathematics and Statistics from the University of Poona (1984–1987). He further pursued his Master of Science in Applied Physics at the University of Poona (1987–1989), where he laid the foundation for his extensive career in applied physics and instrumentation design.

💼 Professional Endeavors

 Since June 1999, Sanjiv has served as a Scientific Officer at the Indus Synchrotron Facility, Raja Ramanna Centre for Advanced Technology, Indore, India, where he has worked on numerous high-profile projects. His notable contributions include the development of VME-based control systems, PLC safety interlocks, and the automation of beamline operations. His efforts in designing and deploying data acquisition systems using National Instruments LabVIEW® have been crucial in advancing the synchrotron facility’s capabilities. Additionally, he has been instrumental in designing FPGA-based DAQ systems and PXI system deployments for beamline control.

🔬 Contributions and Research Focus

Sanjiv’s research is centered on synchrotron radiation, particularly in the design and development of control systems for X-ray beamlines and instrumentation. His work on extended X-ray absorption fine structure (EXAFS), soft X-ray reflectivity, and nonlinear behavior of piezoceramic actuators has gained significant attention in the field. He has co-authored several important publications, contributing to the advancement of both material characterization and synchrotron beamline technology.

🌍 Impact and Influence

 Sanjiv’s contributions have made a significant impact on synchrotron radiation research, particularly in beamline automation and data acquisition systems. His international collaborations at CERN and Indus Synchrotron Facility have helped improve the performance of synchrotron radiation facilities, making them more efficient and accessible to researchers worldwide. His papers and conference presentations continue to influence the direction of research in synchrotron instrumentation and applied physics.

📚 Academic Cites

Sanjiv’s work has been widely cited in notable academic journals and has been presented at prestigious international conferences. His publications in journals such as Nuclear Instruments and Methods in Physics Research, Rev. Sci. Instrum., and Mechanics of Advanced Materials and Structures have contributed significantly to the development of synchrotron radiation technologies. Notable works include:

  1. “Extended X-ray Absorption Fine Structure (EXAFS) measurement of Cu metal foil using thermal wave detector: A comparative study.”
  2. “A versatile beamline for soft x-ray reflectivity, absorption, and fluorescence measurements at Indus-2 synchrotron source.”
  3. “Electric field-induced nonlinear behavior of lead zirconate titanate piezoceramic actuators in bending mode.”

🔧 Research Skills

Sanjiv’s technical expertise spans several areas including:

  • Instrumentation & Control: VME systems, PLC programming (Siemens Step 7), microcontroller-based systems (ARM, 8051).
  • Programming Languages: Proficient in LabVIEW®, C/C++, Python, Visual Basic, and VEEPRO.
  • Design & Simulation: Expertise in Altium Designer, Protel, ISE (FPGA design), NI Multisim, and Electronic Workbench.
  • Data Acquisition & Analysis: In-depth experience in developing FPGA-based DAQ systems, PXI systems, and database management using Microsoft Access.

👨‍🏫 Teaching Experience

Sanjiv has extensive experience in training and mentoring junior researchers and scientists in the areas of control systems and instrumentation for synchrotron radiation. His involvement in numerous workshops, symposia, and conferences allows him to share his expertise with others in the field.

🌱 Legacy and Future Contributions

Sanjiv’s legacy lies in his contributions to synchrotron radiation research, particularly in improving beamline automation and X-ray measurement systems. As he continues his Ph.D. journey, his future contributions will likely focus on advanced control systems and enhancements to synchrotron facilities. His ongoing work promises to make lasting improvements in the development of synchrotron instrumentation that will support the scientific community in material science, biotechnology, and physics research.

Publications Top Notes

Characterizing Pyroelectric Detectors for Quantitative Synchrotron Radiation Measurements

  • Authors: SR Kane, RW Whatmore, MN Singh, S Satapathy, PK Jha, PK Mehta
    Journal: Sensors and Actuators A: Physical
    Year: 2025

Development of Piezo-actuated X-ray Deformable Mirror for Vertical Focusing of Synchrotron Radiation at Indus-2

  • Authors: HSK Jha, AK Biswas, MK Swami, A Sagdeo, C Mukherjee, SR Kane, …
    Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators
    Year: 2024

Green Protocol For Synthesis of Cu2O@g‐C3N4 Photocatalysts For 1, 4 Radical Oxidative Addition of Trans Crotonaldehyde Under Visible Light Condition

  • Authors: BA Maru, VJ Rao, S Kane, UK Goutam, CK Modi
    Journal: ChemPhotoChem
    Year: 2024

Development and Initial Results of X-ray Magnetic Circular Dichroism Beamline at Indus-2 Synchrotron Source

  • Authors: B Kiran, SR Garg, CK Garg, S Lal, SK Nath, R Jangir, SR Kane, …
    Journal: Proceedings of the Theme Meeting on Spectroscopy Using Indus Synchrotron
    Year: 2023

Facile Single-pot Synthesis of Fe-doped Nitrogen-rich Graphitic Carbon Nitride (Fe2O3/g-C3N4) Bifunctional Photocatalysts Derived from Urea for White LED-mediated Aldol Condensation Reaction

  • Authors: BA Maru, R Joshi, VJ Rao, SR Kane, CK Modi
    Journal: Inorganic Chemistry Communications
    Year: 2025

 

Marcin Szczęch | Experimental methods | Excellence in Innovation

Assoc. Prof. Dr. Marcin Szczęch | Experimental methods | Excellence in Innovation

AGH University of Krakow | Poland

Marcin Szczęch is a professor at the AGH University of Krakow in Poland, specializing in the study of magnetic fluids (both magnetorheological and ferrofluid) and their applications, particularly in sealing technology. With an academic career dedicated to exploring fluid dynamics and material science, Szczęch’s work has influenced several engineering fields, contributing both to theoretical studies and practical solutions. His groundbreaking contributions, particularly in magnetic fluid sealing, have earned him a reputation as a leading researcher in his field.

👨‍🎓Profile

Google scholar

Scopus

ORCID

Early Academic Pursuits 🎓

Marcin Szczęch’s academic journey began at the AGH University of Krakow, where he earned both his Bachelor’s and Ph.D. in Mechanical Engineering. His Ph.D. thesis focused on the durability of rotary ferrofluid seals in water environments, setting the foundation for his expertise in magnetic fluid applications. After earning his Doctor of Philosophy in 2014, he further advanced his research by exploring the continuity behavior of liquid rings formed by magnetic liquids, which earned him a post-doctoral degree in 2021.

Professional Endeavors 💼

Since 2011, Szczęch has been a faculty member at the AGH University of Krakow, currently holding the position of Professor at the Faculty of Mechanical Engineering and Robotics. In this role, he has not only continued to drive forward his research on magnetic fluids but also contributed significantly to the academic environment by mentoring over 40 students and supervising doctoral research projects. His main research areas focus on magnetorheological and ferrofluids and their use in various industrial applications, especially for fluid seals, vibration isolators, and lubrication systems.

Contributions and Research Focus 🔬

Marcin Szczęch’s research is primarily focused on magnetic fluids and their practical applications. His work has explored the use of these fluids in various contexts, such as magnetic fluid sealing systems, lubrication systems, and vibration isolators. Some of his most notable projects include the development of the Compact Magnetic Fluid Seal (CMFS) and research into biocompatible coatings for medical applications. He has also worked extensively on magnetic fluid lubricated bearings, contributing to the understanding of how these materials operate under magnetic field conditions.

Impact and Influence 🌍

Marcin Szczęch has made a significant impact in both academia and industry. His published research in prominent journals and his extensive patent portfolio (24 patents granted by the Polish Patent Office) underscores his ability to not only advance the scientific understanding of magnetic fluids but also provide practical solutions for industries such as machine design, materials science, and bioengineering. His multidisciplinary research continues to push the boundaries of engineering, positioning him as a key influencer in the development of innovative fluid dynamics solutions.

Academic Cites and Scholarly Recognition 📚

Szczęch’s scholarly work has earned him a strong reputation, as evidenced by his 52 publications on the AGH BaDAP list and 23 indexed in the Web of Science database. With an H-index of 9, Szczęch’s work has been cited numerous times, indicating its relevance and importance in the academic community. His contributions to magnetic fluid dynamics have gained recognition in a wide array of engineering disciplines, cementing his status as a thought leader in the field.

Research Skills and Expertise ⚙️

Szczęch is proficient in a variety of engineering programs such as SolidWorks, AutoCAD, Matlab, Mathcad, Ansys, and LabVIEW, and is well-versed in operating specialized research equipment like rotational rheometers, particle distribution analyzers, and 3D scanners. His expertise in magnetic fluids, coupled with his command of these advanced tools, allows him to carry out both theoretical and experimental studies that bridge the gap between research and industrial application.

Teaching Experience 📖

As a professor, Szczęch teaches a wide range of courses, including Fundamentals of Machine Construction, Machine Design, Modern Engineering Materials, and Computer-Aided Design. His teaching has positively impacted numerous students, with more than 40 thesis works realized under his supervision. He plays an active role in shaping the next generation of engineers and researchers, fostering a deep understanding of both fundamental principles and practical applications of magnetic fluid technologies.

Awards and Honors 🏆

Marcin Szczęch’s work has been recognized through various grants, patents, and research projects. He has received numerous accolades for his contributions to engineering, particularly in the areas of magnetic fluid sealing systems and lubrication technologies. His 24 patents and participation in several innovative research projects underscore his commitment to pushing the envelope of applied research. Additionally, he has been recognized for his role in supervising and mentoring students, further establishing his credibility as an academic leader.

Legacy and Future Contributions 🌱

Marcin Szczęch’s legacy is shaped by his contributions to magnetic fluid technology, especially in the development of advanced seals, lubricants, and vibration isolators. Looking forward, Szczęch is poised to expand his research into sustainable and eco-friendly applications of magnetic fluids, particularly in the context of green engineering and biotechnology. His future contributions could bridge the gap between advanced materials and sustainability, aligning his work with the growing global focus on environmentally conscious engineering solutions.

Publications Top Notes

Research into the pressure capability and friction torque of a rotary lip seal lubricated by ferrofluid

  • Authors: Marcin Szczęch
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2025

Analysis of a new type of electric power steering gear with two pinions engaged on the same set of teeth on the rack

  • Authors: Marcin Szczęch, Marcin Nakielski, Jaroslaw Bujak
    Journal: Tribologia: teoria i praktyka
    Year: 2024

Comparative study of models and a new model of ferrofluid viscosity under magnetic fields and various temperatures

  • Authors: Marcin Szczęch, Tarasevych Yuliia
    Journal: Tribologia: teoria i praktyka
    Year: 2024

Research into the properties of magnetic fluids produced by milling technology

  • Authors: Wojciech Horak, Marcin Szczęch
    Journal: Tribologia: teoria i praktyka
    Year: 2024

The influence of printing parameters on leakage and strength of fused deposition modelling 3D printed parts

  • Authors: Marcin Szczęch, Wojciech Sikora
    Journal: Advances in Science and Technology Research Journal
    Year: 2024