Ashraf M. Alattar | High energy physics | Editorial Board Member

Assist. Prof. Dr. Ashraf M. Alattar | High energy physics | Editorial Board Member

Teaching and head of lab, Al-Karkh University of Science, Iraq

πŸ‘¨β€πŸŽ“ Profile

πŸŽ“ Early Academic Pursuits

Dr. Ashraf Alattar’s academic journey began at the University of Technology, where he earned his B.Sc. in Applied Sciences in 2006. His pursuit of higher education continued at Pune University, India, where he received his M.Sc. in Physics from Fergusson College in 2011. The pinnacle of his academic career was achieved through a Ph.D. in Laser and Medical Physics, a joint program between the University of Baghdad and the Georgia Institute of Technology in 2017, which marked the beginning of his deep focus on medical applications of physics. πŸ“š

πŸ’Ό Professional Endeavors

Dr. Alattar has built a distinguished professional career, with a focus on Medical Physics and Laser & Molecular Physics. He currently serves as an Assistant Professor in the Department of Medical Physics at Al-Karkh University of Science, a position he has held since August 2021. His past roles include significant contributions to the University of Baghdad, where he worked on various administrative and academic tasks, and at Al-Hussain University College where he taught Medical Devices Techniques Engineering. His work has bridged the gap between academic research and practical healthcare solutions. πŸ₯

πŸ‘¨β€πŸ« Teaching Experience

With over a decade of experience in teaching medical physics and engineering courses, Dr. Alattar has contributed extensively to academia. He has taught courses such as Medical Physics I & II, Physics of Medical Devices, Radiotherapy, Prosthetics Physics, and Biophysics at several institutions, including the University of Baghdad and Al-Karkh University of Science. His teaching approach focuses on bridging theory with practical application, preparing students to face challenges in the medical physics field. πŸŽ“

πŸ”¬ Contributions and Research Focus

Dr. Alattar’s research lies at the intersection of laser technology and medical applications, particularly in the fields of medical devices and radiation therapy. His work explores innovative medical imaging, radiotherapy techniques, and the integration of biophysics with medical technologies. Through his contributions, he has aimed to improve diagnostic precision and treatment efficiency in healthcare. He continues to investigate the potential of molecular lasers for medical applications, focusing on the development of advanced techniques to optimize radiation doses and reduce patient risks. 🌱

πŸ“ˆ Impact and Influence

Dr. Alattar’s research has made a significant impact on the advancement of medical technologies, especially in Iraq. His dedication to improving healthcare systems through innovative research and technology has not only contributed to the academic community but also to practical healthcare solutions. His teaching has inspired future generations of medical physicists, making a lasting impact on students and professionals in the field of medical physics. 🌍

🧠 Academic Cites and Recognition

Dr. Alattar’s work has been widely recognized in the academic community. His research has been cited in numerous scientific journals, particularly in the fields of laser physics and medical applications. His Google Scholar and ORCID profiles demonstrate his ongoing contributions to the scientific literature, showcasing his impact on the global academic community. πŸ“‘

βš™οΈ Technical Skills

Dr. Alattar is highly skilled in various areas of Medical Physics, with expertise in:

  • Radiation Therapy 🌟
  • Medical Imaging πŸ–₯️
  • Laser Physics πŸ”¬
  • Biophysics & Molecular Physics 🧬
  • Medical Devices and Engineering Applications πŸ₯

His technical skills enable him to bridge the gap between theoretical research and real-world healthcare applications. πŸš€

Top Noted Publications

The influence of pulsed laser on the structural and optical properties of green tea extract leaf produced with silver nanoparticles as antimicrobial
  • Authors: Alattar, A.M.
    Journal: Journal of Molecular Liquids
    Year: 2024
  • Title: Enhanced ultraviolet photodetector based on Al-doped ZnO thin films prepared by spray pyrolysis method
  • Authors: Abbas, S.I., Alattar, A.M., Al-Azawy, A.A.
    Journal: Journal of Optics (India)
    Year: 2024
Nanoparticles Prepared by Spray Pyrolysis Technology for UV Detector Improvement: Study Bacterial Activity with Medical Physics
  • Authors: Alattar, A.M., Abbas, S.I., Al‑Azawy, A.A.
    Journal: Plasmonics
    Year: 2024 (Article in Press)
Investigate optical and structural properties with molecular behavior of AgI and silver oxide nanoparticles prepared by green synthesis from the Acacia Senegal plant and achieving biocompatibility
  • Authors: Bahari, A., Esmail, S.I., Alattar, A.M.
    Journal: Journal of Optics (India)
    Year: 2024 (Open access)
Laser Fragmentation of Green Tea-synthesized Silver Nanoparticles and Their Blood Toxicity: Effect of Laser Wavelength on Particle Diameters
  • Authors: Alattar, A.M., Al-Sharuee, I.F., Odah, J.F.
    Journal: Journal of Medical Physics
    Year: 2024

 

 

Amirali Farmani | High energy physics | Best Researcher Award

Mr. Amirali Farmani | High energy physics | Best Researcher Award

PHD at Sahand University of Technology, Iran

Amirali Farmani is a Ph.D. candidate in Material Science at Sahand University of Technology, focusing on enhancing hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes. He holds a Bachelor of Engineering in Material Engineering with a specialization in Metallurgy from Bonab University and a Master of Science in Material Science from Sahand University. His research includes innovative approaches to corrosion protection, nanocrystalline nickel films, and electrochemical water splitting. Amirali has contributed significantly to his field with several publications in esteemed journals and has been involved in consultancy projects, including designing novel corrosion protection systems. High energy physics

Professional Profiles

Academic and Professional Background

From September 2013 to August 2017, Amirali Farmani pursued a Bachelor of Engineering in Material Engineering with a specialization in Metallurgy at Bonab University, East Azerbaijan. Continuing his academic journey, from September 2017 to June 2020, he completed a Master of Science in Material Science focusing on Corrosion and Material Protection at Sahand University of Technology, Tabriz, East Azerbaijan. Currently, he is a Ph.D. candidate in Material Science, also at Sahand University of Technology, where his research has focused on enhancing hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes through innovative approaches, as evidenced by several publications in esteemed journals.Β  High energy physics

Areas of Research

Functional Nanomaterials Energy Materials Corrosion and Surface Science. High energy physics

Research Focus

The researcher in question appears to focus on the fields of material science and electrochemistry, with a specific interest in the synthesis and characterization of electrode materials. Their work includes studying the enhancement of hydrogen and oxygen evolution reactions on nickel electrodes, exploring the effects of mesoporosity, magnetohydrodynamics, and high gradient magnetic forces. They also investigate the corrosion behavior and ion release of chromium-cobalt alloys, particularly under the influence of chemical passivation. Additionally, they have delved into the production of nanocrystalline nickel films using ultrasonic-assisted pulse electrodeposition, examining the competition between mass transport and nucleation in determining corrosion resistance. High energy physics

Publications

  1. Ultrasonic-assisted pulse electrodeposition process for producing nanocrystalline nickel films and their corrosion behavior: Competition between mass transport and nucleation, Publication date: 2024.
  2. Effect of chemical passivation on corrosion behavior and ion release of a commercial chromium-cobalt alloy, Publication date: 2020.
  3. Boosting hydrogen and oxygen evolution reactions on electrodeposited nickel electrodes via simultaneous mesoporosity, magnetohydrodynamics and high gradient magnetic force,Β Publication date: 2020.
.