Ranjita Kumari Mohapatra | High energy physics | Best Researcher Award

Assist. Prof. Dr. Ranjita Kumari Mohapatra | High energy physics | Best Researcher Award

Rajdhani College Bhubaneswar | India

Dr. Ranjita Kumari Mohapatra is an Assistant Professor at Rajdhani College in Bhubaneswar, Odisha, specializing in the field of Physics. Her academic journey spans a rich history of rigorous research, teaching, and contributions to the scientific community. With over a decade of experience, Dr. Mohapatra has made significant strides in the realm of relativistic heavy-ion collisions, strongly interacting matter, and transport coefficients.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Mohapatra’s academic foundation began with her M.Sc. in Physics from Utkal University (2004), followed by a Post-M.Sc. program at the Institute of Physics, Bhubaneswar (2005-2006). Her Ph.D. research, titled Investigating Formation and Evolution of Z(3) Walls and Flow Anisotropies in Relativistic Heavy Ion Collisions, was completed at the Institute of Physics in 2012 under the guidance of Prof. Ajit M. Srivastava.

Professional Endeavors 🏢

Dr. Mohapatra’s career trajectory includes post-doctoral fellowships at prestigious institutions such as the Physical Research Laboratory (2012-2014), IIT Bombay (2018-2019), and Banki College (2019-2023). Since February 2023, she has been serving as an Assistant Professor in the Department of Physics at Rajdhani College. Over the years, she has been involved in cutting-edge research and has become a respected educator, imparting knowledge to both undergraduate and postgraduate students.

Contributions and Research Focus 🔬

Dr. Mohapatra’s research focuses on the equation of state of strongly interacting matter, conserved charge fluctuations, and calculation of transport coefficients in relativistic heavy ion collisions. She is currently spearheading an ongoing project funded by the OURIIP seed fund with a grant of Rs. 402,000/-. Her earlier works, such as Z(3) walls and the acoustic oscillations in heavy-ion collisions, have significantly impacted the understanding of QGP (Quark-Gluon Plasma) dynamics and other key phenomena in nuclear physics.

Impact and Influence 🌍

Dr. Mohapatra’s contributions to high-energy nuclear physics are invaluable. Her work on flow anisotropies and magnetic fields in relativistic heavy-ion collisions, as well as her studies on quark-hadron transitions, have had a profound influence on the field, advancing the understanding of strongly interacting matter. Her research continues to shape the future of QCD (Quantum Chromodynamics) and phase transitions in the early universe.

Academic Citations 📑

Dr. Mohapatra has authored numerous influential publications, with more than 19 research papers in renowned journals such as Phys. Rev. C, Phys. Rev. D, and Nucl. Phys. A. Key publications, like her work on inverse magnetic catalysis and transport coefficients, have been cited widely and contribute to the ongoing discourse in nuclear physics. Her work continues to inspire researchers in the fields of quantum chromodynamics and particle physics.

Research Skills 🧠

Dr. Mohapatra’s research expertise includes relativistic hydrodynamics, QCD phase diagram, magnetic catalysis, transport coefficients, and fluctuations in heavy-ion collisions. She has developed key models for understanding conserved charge fluctuations and the influence of magnetic fields on hadron resonance gas models, with significant applications in astrophysics and nuclear physics. Her analytical and computational skills are essential in advancing the field.

Teaching Experience 📚

Dr. Mohapatra’s teaching career spans several prestigious institutions. She has served as a tutor and teaching assistant for undergraduate and postgraduate courses at IIT Bombay, where she taught subjects like nuclear theory and BTech lab courses. At Banki College and Rajdhani College, she has taught undergraduate students in Physics. With a strong pedagogical approach, she instills deep knowledge of nuclear physics and high-energy physics among her students.

Awards and Honors 🏅

Dr. Mohapatra’s scholarly achievements have earned her significant recognition. She was awarded the OURIIP Seed Fund Research Grant (2021) for her innovative research on strongly interacting matter. Her work has also been acknowledged at national and international conferences, where she has presented her research and contributed to advancing the understanding of heavy-ion collisions.

Legacy and Future Contributions 🌱

As an educator and researcher, Dr. Mohapatra continues to build a lasting legacy through her research contributions and teaching practices. Her future goals include furthering the study of QCD matter, phase transitions, and transport coefficients. Dr. Mohapatra envisions her research aiding in precision measurements and experimental predictions that could revolutionize the understanding of nuclear matter in extreme conditions.

Publications Top Notes

QCD phase diagram and the finite volume fireball: A model study
  • Authors: Shaikh, A., Mohapatra, R.K., Datta, S.
    Journal: Nuclear Physics A
    Year: 2025
Finite Volume Effects on the QCD Chiral Phase Transition Using NJL Model
  • Authors: Shaikh, A., Mohapatra, R.K., Datta, S.
    Journal: Springer Proceedings in Physics
    Year: 2024
Axion mass in a hot QCD plasma
  • Authors: Das, A., Abhishek, A., Mohapatra, R.K., Mishra, H.
    Journal: Proceedings of Science
    Year: 2023
Diffusion matrix associated with the diffusion processes of multiple conserved charges in a hot and dense hadronic matter
  • Authors: Das, A., Mishra, H., Mohapatra, R.K.
    Journal: Physical Review D
    Year: 2022
In Medium Properties of Axion Within a Polyakov Loop Enhanced Nambu-Jona-Lasinio Model
  • Authors: Mohapatra, R.K., Abhishek, A., Das, A., Mishra, H.
    Journal: Springer Proceedings in Physics
    Year: 2022

 

 

 

Mahdieh Ghaseminejad | High energy physics | Editorial board member

Dr. Mahdieh Ghaseminejad | High energy physics | Editorial board member

Yazd University | Iran

Dr. Mahdieh Ghasemi Nejad is a flexible and experienced researcher with a strong background in industrial, experimental, and theoretical sciences. She has specialized expertise in micro and nanomaterials, polymers, and nuclear physics. As an academic researcher and university lecturer, she combines her profound knowledge with practical experience in product design and development. Dr. Ghasemi Nejad is a strong communicator, proficient in teamwork, and excels at taking on new challenges and initiatives.

👨‍🎓 Profile

🎓 Early Academic Pursuits

Dr. Ghasemi Nejad embarked on her academic journey with a Bachelor’s degree in Solid State Physics from Kerman University (2005-2009), where she excelled in her studies. She then pursued a Master’s degree in Nuclear Physics at Payam Noor University in Mashhad (2009-2011). Her academic career culminated with a Ph.D. in Nuclear Physics from Yazd University (2017-2021), where she furthered her expertise in the interdisciplinary fields of nuclear and material sciences.

🔬 Professional Endeavors

Currently, Dr. Ghasemi Nejad serves as the Managing Director of Gita Baspar Co. in Yazd, where she is involved in consulting and cooperation on polymer production and product design. Alongside this, she has had an extensive career as a university lecturer at both Azad University and Payam Noor University, contributing to higher education and mentoring young researchers. Dr. Ghasemi Nejad also held the position of Head of Design and Development Unit at Nano Sanjesh Yaran Mohit Co., where she was responsible for product innovation and supervising production processes from 2017 to 2022.

🔬 Contributions and Research Focus

Dr. Ghasemi Nejad’s research revolves around micro and nanomaterials, polymers, and nuclear physics, with a particular focus on the shielding properties of materials against radiation and antibacterial applications. Some of her key research topics include:

  • X-ray attenuation properties of composite materials such as PbO and graphene.
  • The shielding performance of materials like EPVC (lead-free) and high-Z oxide fibers.
  • Investigating the antibacterial properties of polymeric composites containing nanoparticles such as Molybdenum Trioxide.
  • Monte Carlo simulations for radon measurement in water and X-ray attenuation models.

Her work is instrumental in both theoretical and applied aspects of material science, particularly in radiation protection and nanotechnology.

🌍 Impact and Influence

Dr. Ghasemi Nejad has significantly contributed to the fields of nuclear physics, polymer science, and nanomaterials. Her publications and conference papers have made her a recognized figure in the scientific community, particularly in radiation shielding and nanomaterial applications. Her research is highly influential in both academic circles and industrial sectors, where her work in polymer production and product design is shaping innovative solutions for radiation protection and nanocomposites.

💻 Computer Skills

  • Microsoft Office Suite (Word, Excel, PowerPoint)
  • MCNP and GEANT4 for nuclear simulations
  • MATLAB for data analysis
  • Origin Pro for scientific plotting
  • ChemDraw and OPUS for chemical structure drawing
  • Prezi and Image J for presentations and image processing

Her diverse computer skills ensure effective data analysis, modeling, and presentation in both academic and industrial contexts.

🏆 Awards and Honors

Dr. Ghasemi Nejad has been recognized for her scientific achievements throughout her career, including:

  • First place in the Ninth Scientific Festival of Students (Scientific Olympiad in Physics), 2009.
  • Ranked first among undergraduate students at Kerman University in 2009.
  • Patent Declaration for an X-ray protective polymer layer in 2020.

These recognitions emphasize her commitment to scientific excellence and innovation.

Top Noted Publications

  • The effect of modified Tin oxide on X-ray attenuation: An experimental and theoretical study
    Authors: Ghasemi-Nejad, M., Gholamzadeh, L., Adeli, R., Shirmardi, S.P.
    Journal: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
    Year: 2024
  • Investigation of Antibacterial Activity of Synthesized PVC Composites Containing Molybdenum Trioxide Nano Particles
    Authors: Ghasemi-Nejad, M., Gholamzadeh, L., Adeli, R., Shirmardi, S.P.
    Journal: Journal of Surface Investigation
    Year: 2023
  • A comprehensive study of the antibacterial and shielding properties of micro and nano-EPVC lead-free shields
    Authors: Ghasemi-Nejad, M., Gholamzadeh, L., Adeli, R., Shirmardi, S.P.
    Journal: Physica Scripta
    Year: 2022
  • A study of the shielding performance of fibers coated with high-Z oxides against ionizing radiations
    Authors: Gholamzadeh, L., Asari-Shik, N., Aminian, M.K., Ghasemi-Nejad, M.
    Journal: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
    Year: 2020

 

Azeez Barzinjy | High energy physics | Editorial Board Member

Prof. Dr. Azeez Barzinjy | High energy physics | Editorial Board Member

Academic Staff at Soran University, Iraq

Prof. Dr. Azeez A. Barzinjy is a highly accomplished Materials Science expert and a Full Professor at Soran University in the Kurdistan Region of Iraq. With a PhD in Materials Science from the University of Leicester, UK, Dr. Barzinjy has a broad background in Nanotechnology, Quantum Mechanics, and Nanomaterials. He has a robust publication track record and actively participates in international scientific communities. His research collaboration extends to projects in Materials Science, Nanotechnology, and Quantum fields. He has mentored over 50 BSc projects, supervised MSc theses, and served in editorial boards of various scientific journals. His work spans multiple international workshops, conferences, and committees, reflecting his global influence in the field. He also engages in calligraphy, reading, and travelling.

Profile

Early Academic Pursuits 🎓

Prof. Dr. Azeez A. Barzinjy began his academic journey with a B.Sc. in Physics from the University of Salahaddin-Erbil, Iraq, between 1994 and 1998. This foundational education in Physics set the stage for his future pursuits in materials science and theoretical physics. Following his undergraduate studies, he completed two Master’s degrees: one in Superconducting Transmission Lines from Salahaddin University-Erbil (2002-2004) and another in Theoretical Physics at Old Dominion University, Virginia, USA (2008-2009). He later pursued a Ph.D. in Materials Science from the University of Leicester, UK (2011-2014), which marked a significant shift towards materials science and nanotechnology, fields in which he would later become a recognized expert.

Professional Endeavors 💼

Prof. Barzinjy’s career is marked by a combination of teaching, research, and advisory roles. His teaching career began as a Teaching Assistant in the Department of Physics at the University of Salahaddin in 1998, and he later served as a Teaching Staff for several years in various institutions, including TIU and Raparin University in Kurdistan. His teaching focuses on subjects like Quantum Mechanics, Nanotechnology, Materials Science, and Modern Physics, inspiring generations of students at undergraduate and graduate levels.He also holds the position of Researcher at the Scientific Research Center of Soran University, where he mentors several MSc and PhD students and advises over 60 BSc projects. His role extends to active participation in international scientific committees and organizing numerous conferences and workshops, strengthening the research community across Kurdistan and internationally.

Contributions and Research Focus 🔬

Prof. Barzinjy’s research primarily revolves around Materials Science, Nanotechnology, Quantum Mechanics, and Nanomaterials, with a strong emphasis on green synthesis and eco-nanotechnology. He has explored a variety of cutting-edge topics, including nanoparticles synthesis, electrodeposition, thin films, and the use of ionic liquids in materials science. His work in green nanotechnology stands out for focusing on environmentally friendly approaches to nanomaterials synthesis, an area that has gained increasing attention for its potential in reducing environmental impact.

Impact and Influence 🌍

Prof. Barzinjy’s impact stretches beyond his own research and teaching. He is part of several international advisory boards and scientific committees. Notably, he has been an active member of American Physical Society, Royal Society of Chemistry, and American Chemical Society, helping to shape the scientific community in both Iraq and abroad. He has also served on editorial boards for various international journals and review committees for leading academic publications in his field.His recent recognition as one of the top 2% scientists in the world in Materials Science by Stanford University (2023 and 2024) is a testament to the profound impact his research has had. His contributions are not only technical but also serve as a bridge between academia in the Kurdistan Region and the wider scientific world.

Academic Cites and Publications 📚

Prof. Barzinjy has published extensively, with notable books such as “Introduction to Analytical Mechanics” (2024) and contributions to Elsevier’s publication on eco-nanotechnology (2020). His work has garnered widespread citation in international academic journals, with particular focus on his research in superconducting transmission lines, thin films, and quantum mechanics. His authorship in LAP LAMBERT and Scholar’s Press further showcases his intellectual contributions to both theoretical and applied physics.His work has been instrumental in advancing the understanding of strip-transmission lines for superconductors, which has applications in modern electronics and communications.

Technical Skills 💻

Prof. Barzinjy is proficient in a range of technical skills that contribute to his success in both research and teaching. He is highly skilled in mathematical modeling and simulation, utilizing MATLAB, COMSOL Multiphysics, and Spartan for molecular modeling. His software expertise in Graph Pad Prism, Origin Pro, and Mathematica is crucial for data analysis and the development of theoretical models in nanotechnology and materials science.His hands-on experience with electrodeposition techniques, thin-film fabrication, and ionic liquids further enhances his capabilities, enabling him to lead projects that merge both theoretical and experimental research.

Teaching Experience 👨‍🏫

Prof. Barzinjy’s teaching experience spans over two decades, where he has been involved in educating students at various levels, from high school gifted students to MSc and PhD candidates. He has taught courses on Quantum Mechanics, Nanoscience, Materials Science, Modern Physics, and Thermodynamics. His approach to teaching emphasizes both theoretical depth and practical application, ensuring students are equipped with the tools necessary for both academic and professional success.Not only does he teach, but he actively advises and mentors graduate students, guiding them through research projects and thesis work. His involvement in the supervision of MSc and PhD students further solidifies his commitment to shaping the next generation of scientists and researchers.

Legacy and Future Contributions 🔮

Prof. Barzinjy has already established a remarkable legacy in the fields of Materials Science and Nanotechnology, particularly in the Kurdistan region and beyond. His focus on sustainable technologies and eco-nanotechnology places him at the forefront of the global push for more environmentally friendly innovations in science.

Top Noted Publications

Effects of gallic acid and quercetin on the structural, thermal, spectroscopic, in vitro biocompatibility and electronic properties of Au-based hydroxyapatite structure
  • Journal: Materials Chemistry and Physics
    Authors: Serhat Keser, Ahmet Dogan, Tankut Ates, Azeez A. Barzinjy, Burhan Ates, Suat Tekin, Suleyman Sandal, Rebaz Obaid Kareem, İmren Özcan, Niyazi Bulut et al.
    Year: 2024

Biosynthesis and antibacterial activity of ZnO nanoparticles using Buchanania obovata fruit extract and the eutectic-based ionic liquid

  • Journal: Nanotechnology
    Authors: Kadhim Qasim Jabbar, Azeez Abdullah Barzinjy
    Year: 2024

Green synthesis and characterization of Ag nanoparticles using fresh and dry Portulaca Oleracea leaf extracts: Enhancing light reflectivity properties of ITO glass

  • Journal: Micro & Nano Letters
    Authors: Azeez A. Barzinjy, Banaz Sh. Haji
    Year: 2024

Biosynthesis of Silver Nanoparticles at Various pH Values and their Applications in Capturing Irradiation Solar Energy

  • Journal: Recent Patents on Nanotechnology
    Authors: Vinos Mushir Faris, Azeez Abdullah Barzinjy, Samir Mustafa Hamad
    Year: 2024

Catalytic application of green-synthesized ZnO nanoparticles in the synthesis of 1H-pyrazolo[1,2-a]pyridazine-5,8-diones and evaluation of their anti-cancer properties

  • Journal: New Journal of Chemistry
    Authors: Soma Majedi, Faiq H. S. Hussain, Azeez A. Barzinjy, Maryam Hosseinpoor Tehrani, Farouq E. Hawaiz
    Year: 2023

Green Synthesis of ZnO/CuO Nanocomposites Using Parsley Extract for Potential In Vitro Anticoccidial Application

  • Journal: ACS Applied Bio Materials
    Authors: Samir Mustafa Hamad, Azeez Abdullah Barzinjy, Rafigh Raghda, Jalil Parwin, Mirzaei Yousef, Shaikhah Dilshad
    Year: 2023

Green tea extract mediated biosynthesis of lead oxide nanoparticles: characterization, and catalytical activity

  • Journal: Bioresource Technology Reports
    Authors: Safiya Jameel Piro, Samir Mustafa Hamad, Azeez Abdullah Barzinjy, Botan Jawdat Abdullah, Mustafa Saeed Omar, Shaikhah Dilshad
    Year: 2023

 

 

 

Muneeb Ullah | High energy physics | Best Researcher Award

Mr. Muneeb Ullah | High energy physics | Best Researcher Award

PhD, Pusan National University, Busan, South Korea

Muneeb Ullah, born on October 4, 1996, in Pakistan, is a highly motivated professional specializing in pharmaceutical sciences. Currently residing in Busan, South Korea, he is fluent in English, Urdu, and Pashto. Muneeb seeks a position in a result-oriented organization where his skills and education can contribute to mutual growth. His commitment to excellence is evident in his academic achievements and research contributions, positioning him as a valuable asset in the field of pharmacy.

Profile:

🎓Education:

Muneeb holds an MPhil in Pharmaceutical Sciences with a focus on Pharmaceutical Nanotechnology from the Department of Pharmacy, KUST, completed in 2022 with a first division score. Prior to that, he earned a BS in Pharmacy (Pharm-D) from KUST (2014-2019), also with first division honors. His academic journey includes a Pre-Medical F.Sc. from The Crescent Public School (2012-2013) and Matriculation from GHS Hurmaz (2010-2011), where he consistently achieved first division results.

Professional Experience:

Muneeb has diverse experience in education and research. As a Visiting Faculty Member at Billitong Higher Secondary School, he received the Best Teacher Award in 2020 for his impactful teaching. Additionally, he served as a Research Assistant at the National University of Medical Sciences (NUMS) in Islamabad, contributing significantly to various research initiatives. These roles have allowed him to blend his academic knowledge with practical applications, fostering a passion for teaching and research in the pharmaceutical field.

Research  Focus:

Muneeb’s research primarily focuses on pharmaceutical nanotechnology, highlighted by his MPhil thesis on developing Beclomethasone Dipropionate-loaded polymeric nanoparticles via a water-in-oil emulsion solvent evaporation method. His coursework includes pharmaceutics, nanotechnology, and biochemistry, providing a solid foundation for research methodologies. His laboratory skills encompass nanoparticle preparation, antimicrobial activity assessment, and bioinformatics analysis, equipping him to make significant contributions to the field of pharmaceutical sciences.

Awards and Honors:

Throughout his academic journey, Muneeb has received several prestigious awards. He was awarded the HEC-Indigenous Scholarship from 2016 to 2019 for his BS in Pharmacy at KUST. In May 2018, he received the Best Talent Award under the Prime Minister Laptop Scheme, recognizing his outstanding academic performance. Furthermore, he was honored with the Best Teacher Award for the 2020 session at Billitong Higher Secondary School, reflecting his dedication to education and student success.

📖 Publication Top Notes:

Title: Microbiome miracles and their pioneering advances and future frontiers in cardiovascular disease
  • Authors: Safdar, M., Ullah, M., Hamayun, S., Mustopa, A.Z., Hasan, N.
    Publication Year: 2024
    Citations: 1
Title: Development of Clindamycin-Releasing Polyvinyl Alcohol Hydrogel with Self-Healing Property for the Effective Treatment of Biofilm-Infected Wounds
  • Authors: Alifah, N., Palungan, J., Ardayanti, K., Yoo, J.-W., Hasan, N.
    Publication Year: 2024
    Citations: 0
Title: 3D printing technology and its revolutionary role in stent implementation in cardiovascular disease
  • Authors: Khan, M.A., Khan, N., Ullah, M., Naeem, M., Hasan, N.
    Publication Year: 2024
    Citations: 4
Title: Recent advancements in nanotechnology based drug delivery for the management of cardiovascular disease
  • Authors: Ullah, A., Ullah, M., Lim, S.I.
    Publication Year: 2024
    Citations: 7
Title: Nanotherapeutic approaches for transdermal drug delivery systems and their biomedical applications
  • Authors: Khan, S.U., Ullah, M., Saeed, S., Khan, M.A., Lu, K.
    Publication Year: 2024
    Citations: 4
Title: Single-cell RNA Sequencing (scRNA-seq): Advances and Challenges for Cardiovascular Diseases (CVDs)
  • Authors: Khan, S.U., Huang, Y., Ali, H., Ullah, M., Lu, K.
    Publication Year: 2024
    Citations: 7