Wei Xiong | Quantum Technologies | Best Researcher Award

Assoc. Prof. Dr. Wei Xiong | Quantum Technologies | Best Researcher Award

Head of Department of Physics, Wenzhou University, China

Dr. Wei Xiong is the Head of the Department of Physics at Wenzhou University and a distinguished researcher in quantum optics. With over 58 peer-reviewed publications, 1500+ citations, and a dynamic academic trajectory, he is recognized for pioneering contributions to quantum information science. His research delves into NV spin–magnon interactions, entanglement dynamics, and nonreciprocal quantum mechanisms, pushing the boundaries of theoretical and experimental physics.

👨‍🎓Profile

Google scholar

Scopus

ORCID

🎓 Early Academic Pursuits

Dr. Wei Xiong began his academic journey with a B.Sc. in Physics from Chaohu College, followed by an M.Sc. in Atomic, Molecular, and Optical Physics from Anhui University. He earned his Ph.D. in Theoretical Physics from the prestigious Fudan University. His educational background reflects a strong grounding in both fundamental and applied physics. During his training, Dr. Xiong developed deep expertise in quantum mechanics, optical systems, and magnetic interactions, laying the foundation for his future achievements in quantum optics research.

🧪Professional Endeavors

Dr. Xiong’s career includes critical academic roles, from a Research Assistant at The Hong Kong Polytechnic University, to a Postdoctoral Fellow at the Beijing Computational Science Research Center. He served as Lecturer at Hefei Universityand joined Wenzhou University, where he rose to become a Distinguished Professor. His international exposure, including a short-term academic visit to Zhejiang University, has enriched his global perspective and helped foster interdisciplinary collaborations, essential for cutting-edge quantum research.

🔬 Contributions and Research Focus

Dr. Xiong is acclaimed for his innovative research in quantum optics, notably the first realization of long-distance strong coupling between a single NV spin and magnons, and the demonstration of a magnon-mediated high-fidelity two-qubit Iswap gate. He also proposed a nonreciprocal entanglement mechanism enabled by Kerr nonlinearity in magnons, offering new pathways in quantum communication and sensing. His work bridges quantum theory and spintronics, contributing significantly to quantum information science, hybrid systems, and spin-photon interfaces.

🌐 Impact and Influence

With over 1500 citations on Google Scholar, Dr. Xiong’s work is widely recognized in the international quantum physics community. His studies have influenced next-generation quantum devices, sparking interest in both theoretical physics and experimental applications. As the Head of Department, he fosters academic excellence, encouraging innovation, collaboration, and advanced research culture. His leadership and scientific vision continue to shape young physicists, making a significant impact on research, mentoring, and institutional development.

📊 Academic Cites

Dr. Xiong’s citation index surpasses 1500, reflecting the relevance and influence of his published research. His 58 articles indexed in SCI and Scopus databases demonstrate consistent scholarly output, especially in quantum optics, hybrid quantum systems, and spin-based computing. His most cited works explore the interface of magnonics and quantum coherence, highly regarded by peers in quantum technologies and condensed matter physics. This academic footprint solidifies his position among leading early-career researchers in his field.

🧪 Research Skills 

Dr. Xiong exhibits a rare combination of theoretical modeling, experimental collaboration, and computational simulations in quantum mechanics. His strengths include designing quantum protocols, understanding nonlinear dynamics, and developing models for magnon-based entanglement. He is proficient in using analytical and numerical tools to solve complex problems in quantum field theory and quantum information processing. His collaborative spirit and technical expertise enable productive joint work across multidisciplinary platforms, enhancing research efficiency, depth, and innovation.

👨‍🏫 Teaching Experience

With nearly a decade of academic engagement, Dr. Xiong has taught a wide range of undergraduate and postgraduate courses in quantum mechanics, modern physics, electrodynamics, and advanced theoretical physics. His teaching philosophy emphasizes conceptual clarity, research integration, and student empowerment. At Wenzhou University, he has also guided several master’s and PhD-level research projects, fostering critical thinking and hands-on experience. As a departmental leader, he plays a vital role in curriculum development, faculty mentoring, and academic planning, significantly enhancing the university’s physics education standards.

🏅 Awards and Honors

Dr. Wei Xiong was promoted to Distinguished Professor at Wenzhou University in January 2023, recognizing his excellence in research and leadership. Although his record currently shows no patents or books, his scientific output, editorial role, and collaborations with global institutions stand as a testament to his academic value. His rapid promotion through academic ranks and inclusion in impactful projects mark him as a rising star in quantum optics. Membership in prominent research groups and continuous research support further highlight his dedication and scientific merit.

🌟 Legacy and Future Contributions

Dr. Xiong is poised to make transformative contributions to the fields of quantum optics and hybrid quantum systems. As a scholar, mentor, and leader, he is building a research legacy rooted in fundamental discovery and real-world impact. His long-term vision includes expanding nonreciprocal quantum devices, engaging in cross-border collaborations, and fostering young scientific talent. With continued focus on quantum entanglement mechanisms, he is expected to contribute solutions to emerging challenges in quantum communication and quantum computing, ultimately shaping the next generation of optical and quantum technologies.

Publications Top Notes

Strong and noise-tolerant entanglement in dissipative optomechanics
  • Authors: Jiaojiao Chen, Wei Xiong, Dong Wang, Liu Ye
    Journal: Physical Review A
    Year: 2025

Mechanical Dynamics Around Higher‐Order Exceptional Point in Magno‐Optomechanics
  • Authors: Wen‐Di He, Xiao‐Hong Fan, Ming‐Yue Liu, Guo‐Qiang Zhang, Hai‐Chao Li, Wei Xiong
    Journal: Advanced Quantum Technologies
    Year: 2025

Cavity magnon–polariton interface for strong spin–spin coupling
  • Authors: Ma-Lei Peng, Miao Tian, Xue-Chun Chen, Ming-Feng Wang, Guo-Qiang Zhang, Hai-Chao Li, Wei Xiong
    Journal: Optics Letters
    Year: 2025

Nonreciprocal Microwave-Optical Entanglement in Kerr-Modified Cavity Optomagnomechanics
  • Authors: Ming-Yue Liu, Yuan Gong, Jiaojiao Chen, Yan-Wei Wang, Wei Xiong
    Journal: Chinese Physics B
    Year: 2025

Coherent competition and control between three-wave mixing and four-wave mixing in superconducting circuits
  • Authors: Miao-Xiang Liang, Yu-Xiang Qiu, Hai-Chao Li, Wei Xiong
    Journal: Physical Review A
    Year: 2025

 

 

 

Jiafeng Feng | Quantum Technologies | Best Researcher Award

Dr. Jiafeng Feng | Quantum Technologies | Best Researcher Award

Institute of Physics, Chinese Academy of Sciences | China

Dr. Feng Jiafeng is an Associate Professor at the Institute of Physics, Chinese Academy of Sciences. He received his Doctoral degree in 2007 from the Institute of Physics, Chinese Academy of Sciences. After completing postdoctoral research at Trinity College Dublin and SpinTec, France, Dr. Feng became a Position-Professor at the University of Chinese Academy of Sciences in 2016. His expertise lies in spintronics with a focus on magnetic sensors, magnetic random access memory, and spin torque nano-oscillators. He has published over 100 SCI papers and holds more than 10 patents.

👨‍🎓 Profile

🎓Early Academic Pursuits

Dr. Feng’s academic journey began at Anhui University, where he earned his Bachelor’s degree in Physics in 2002. His keen interest in spintronics led him to the Institute of Physics, Chinese Academy of Sciences, where he obtained his PhD in 2007. His doctoral research laid the foundation for his expertise in magnetic materials and spin transport phenomena. Dr. Feng’s early academic work focused on the theoretical and experimental study of magnetic thin films and nanostructures, which became a cornerstone for his subsequent career in spintronic devices.

🌍 Professional Endeavors

Dr. Feng’s professional journey spans multiple continents, highlighting his global contributions to materials physics. After completing his Ph.D., he conducted postdoctoral research at Trinity College Dublin (2007–2011) and SpinTec, Grenoble (2011–2013), focusing on magnetic sensors and spin torque nano-oscillators. In 2013, he joined the Institute of Physics, CAS, as an Associate Professor and later became a Position-Professor at the University of CAS in 2016. His professional roles reflect his leadership in spintronic device innovation, with significant impact in academic and applied physics.

⚙️ Contributions and Research Focus

Dr. Feng specializes in spintronics, emphasizing the development of magnetic sensors, magnetic random access memory (MRAM), and spin torque nano-oscillators. His work has resulted in more than 100 publications in prestigious journals like Advanced Materials and Nature Communications. He has also secured over 10 patents, showcasing his ability to translate theoretical research into practical applications. By advancing quantum well oscillations and spin Hall conductivity, Dr. Feng has positioned himself as a pioneer in magnetic device engineering, contributing to the next-generation technologies in this field.

📚Academic Cites and Achievements

Dr. Feng’s publications are highly cited in leading scientific journals. His work on magnetoresistance, spin-valve structures, and spin-Hall effects has been referenced over 2400 times, with significant attention in prestigious journals like Nature Communications, Science Advances, Advanced Materials, and Physical Review Letters. His h-index of 27 reflects the broad influence of his research in spintronics and related fields. Additionally, he holds more than 10 patents in China and the USA, contributing to the development of next-generation spintronic devices.

🧑‍🔬Research Skills

Dr. Feng possesses exceptional research skills in both theoretical and experimental aspects of spintronics. He has expertise in the design and fabrication of nano-scale devices, particularly spin-valve structures and magnetic tunnel junctions. His proficiency in material synthesis, magnetometry, and microwave measurements has led to breakthroughs in spin transport and magnetoresistance phenomena. His interdisciplinary approach allows him to collaborate across fields, combining physics, engineering, and materials science. Furthermore, Dr. Feng’s ability to translate fundamental discoveries into practical applications is a hallmark of his research.

👨‍🏫Teaching Experience

Dr. Feng has been a Position-Professor at the University of Chinese Academy of Sciences since 2016. He mentors graduate students, offering courses on spintronics and quantum materials. His teaching style emphasizes practical applications, fostering a deep understanding of magnetic devices and phenomena. By integrating his research insights into his lectures, Dr. Feng inspires students to pursue innovative solutions to complex scientific challenges. His commitment to education and mentorship has cultivated the next generation of materials scientists and physicists.

🏆 Awards and Honors

Dr. Feng’s achievements include his selection for the Youth Innovation Promotion Association of the Chinese Academy of Sciences in 2017, recognizing his potential as a leader in scientific innovation. He has been awarded multiple prestigious fellowships and has received grants for pioneering research projects. His patents, published in both China and the USA, underscore his contribution to applied physics. These accolades reflect his dedication to advancing spintronics and solidify his reputation as a trailblazer in his field.

🔮 Legacy and Future Contributions

Dr. Feng envisions a future where spintronic technologies revolutionize data storage and sensor systems. His ongoing work aims to enhance the performance and scalability of magnetic random access memory (MRAM) and nano-oscillators. Through his patents and publications, he continues to influence materials science and applied physics. His legacy lies in his pioneering contributions to spintronics and his dedication to mentorship and innovation, ensuring that his scientific impact endures for generations.

Publications Top Notes

Fast response of TMR magnetic sensor in high-frequency alternating magnetic fields under varying temperature conditions

  • Authors: Chen, P., Feng, J., Zhang, Y., Jiang, A., Han, X.
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2024

Temperature dependent structural and magnetic properties of permalloy (Ni80Fe20) nanotubes

  • Authors: Parajuli, S., Javed, K., Irfan, M., Feng, J.F., Han, X.F.
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2024

Quantum well oscillations in giant magnetoresistance and conductance with ferromagnetic free layer thickness in spin-valve structures with inverted [Co/Pt]n/Co reference layer

  • Authors: Feng, J., Chen, P., Liu, S., Lu, M., Han, X.F.
    Journal: Journal of Magnetism and Magnetic Materials
    Year: 2024

Magnetization switching driven by spin current in a T-type ferromagnetic trilayer

  • Authors: Liu, S., Wan, C., Feng, J., Samardak, A.S., Han, X.
    Journal: Applied Physics Letters
    Year: 2024

Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping

  • Authors: Xu, H., Jia, K., Huang, Y., Han, X., Yu, G.
    Journal: Nature Communications
    Year: 2023