Xiaolan Xue | Experimental methods | Best Researcher Award

Dr. Xiaolan Xue | Experimental methods | Best Researcher Award

Lecturer at China University of Mining and Technology, China

Dr. Xiaolan Xue is a dedicated materials scientist whose research significantly advances the field of electrochemical energy storage, particularly multivalent ion batteries. She earned her Ph.D. in Chemistry from Nanjing University in 2020 under the mentorship of Prof. Zhong Jin. Currently, she is a researcher at the School of Materials Science and Physics, China University of Mining and Technology. Her work centers around designing innovative functional materials for high-performance rechargeable batteries, focusing on magnesium-ion systems. Dr. Xue has published over 20 peer-reviewed articles in high-impact journals such as Advanced Functional Materials, ACS Nano, and Nano Letters. Her research integrates material design, redox chemistry, and interface engineering. She is also a frequent collaborator on multidisciplinary projects, showcasing her strong leadership and team science capabilities. Dr. Xue continues to push the boundaries of sustainable energy research, contributing both foundational knowledge and practical advancements in next-generation energy storage technologies.

Author Profile

Scopus | ORCID

Education

Dr. Xiaolan Xue obtained her Ph.D. in Chemistry from the prestigious School of Chemistry and Chemical Engineering at Nanjing University (China). During her doctoral studies, she worked under the guidance of Prof. Zhong Jin, a renowned figure in electrochemical energy systems and nanomaterials. Her Ph.D. research laid a strong foundation in functional materials, redox processes, and advanced characterization methods for electrochemical applications. Prior to her doctorate, she completed her undergraduate and master’s degrees in chemistry, where she began focusing on the synthesis and evaluation of materials for environmental and energy-related applications. Her educational journey has been rooted in interdisciplinary learning, combining materials science, electrochemistry, nanotechnology, and catalysis. This diverse academic background has equipped her with a solid theoretical and experimental skill set that supports her current research in magnesium-ion batteries and beyond. She consistently ranked at the top of her class and received multiple academic recognitions throughout her education.

Experience 

Since earning her Ph.D. in 2020, Dr. Xiaolan Xue has served as a researcher and faculty member at the School of Materials Science and Physics, China University of Mining and Technology. She is engaged in cutting-edge research focused on advanced materials for multivalent ion batteries, primarily magnesium-based systems. She has led several independent projects and collaborations, contributing to the development of interface engineering strategies, hybrid cathode materials, and redox chemistry in energy storage. Dr. Xue has extensive hands-on experience with materials synthesis, structural characterization (XRD, SEM, TEM, XPS), and electrochemical performance analysis (CV, EIS, GCD). She has also mentored graduate and undergraduate students, fostering academic growth and scientific curiosity. In addition to her laboratory work, she regularly participates in peer reviews and editorial activities. Her postdoctoral experience continues to reflect a commitment to academic excellence and innovation in sustainable and high-performance energy storage technologies.

Awards and Honors

Dr. Xiaolan Xue has been recognized with several awards and honors for her outstanding contributions to energy storage research. Notably, she has received Best Paper Awards, Young Scientist Awards, and Excellent Researcher recognitions at both national and institutional levels. Her publications in prestigious journals such as ACS Nano, Advanced Functional Materials, and Nano Research have been featured in editorial highlights and recommended reading lists. She has also been invited as a reviewer for leading scientific journals in materials science and electrochemistry. Throughout her academic journey, she earned multiple merit-based scholarships during her doctoral and postgraduate studies. Moreover, she was nominated for research excellence awards by the China University of Mining and Technology, recognizing her high-impact scientific contributions and collaborative research efforts. Her work continues to gain attention in the global battery research community, positioning her as an emerging leader in sustainable energy materials development.

Research Focus

Dr. Xiaolan Xue’s research primarily revolves around developing advanced functional materials for electrochemical energy storage systems, with a strong emphasis on multivalent ion batteries, especially magnesium-ion batteries. Her scientific approach integrates nanostructure engineering, interface modification, and cathode/electrolyte optimization to enhance the efficiency, stability, and life cycle of next-generation batteries. She focuses on both inorganic (metal sulfides, selenides) and organic electrode materials, exploring redox mechanisms, structural transformations, and interfacial reactions at the atomic level. Dr. Xue also investigates cationic-anionic redox reactions, electrolyte-cathode compatibility, and separator functionalization. Her work contributes to resolving key challenges such as dendrite formation, poor reversibility, and low conductivity in multivalent systems. With an interdisciplinary approach combining chemistry, materials science, and energy technology, her research aims to offer sustainable, high-capacity, and safe battery solutions for future electronics, grid storage, and electric vehicles. She continuously seeks to bridge fundamental understanding with practical application in energy storage technologies.

Publication

  • CuCl as a Mg2+ Reservoir for in situ Interface Layer Engineering and Highly Stable Mg Plating/Stripping, Journal of Colloid and Interface Science, 2025 (accepted).
  • Synergy of Electrolyte Manipulation and Separator Functionalization Enables Ultralong-life Nonaqueous Magnesium-Organic Batteries, Journal of Materials Chemistry A, 2024.
  • High-Capacity and Ultra-Long-Life Mg-Metal Batteries Enabled by Intercalation-Conversion Hybrid Cathode Materials, Small, 2024.
  • A Review of Metal Sulfide Cathode Materials for Non-Aqueous Multivalent Ion Batteries, Journal of Energy Storage, 2024.
  • Cationic-Anionic Redox Chemistry in Multivalent Metal-Ion Batteries, Advanced Functional Materials, 2023.
  • Interlayer Engineering of VS2 Nanosheets via In Situ Aniline Intercalative Polymerization, ACS Applied Materials & Interfaces, 2023.
  • Electronic Structure Engineering on NiSe2 via Nitrogen Doping, Journal of Colloid and Interface Science, 2023.
  • A Critical Review of Inorganic Cathode Materials for Rechargeable Magnesium Ion Batteries, Journal of Energy Storage, 2023.

Conclusion

Dr. Xiaolan Xue is a rising star in materials science, contributing outstandingly to electrochemical energy storage research. Her innovative approaches and prolific publication record underscore her value to the scientific community. She is well-positioned to lead future developments in sustainable energy materials and next-generation battery technologies.

 

 

Sadaf Saeed | Experimental methods | Best Researcher Award

Dr. Sadaf Saeed | Experimental methods | Best Researcher Award

Post doc at Shenzhen University, China

Dr. Sadaf Saeed is a highly accomplished researcher specializing in applied physics, nanotechnology, and advanced laser-based micro/nanofabrication. She is currently a Postdoctoral Research Fellow at the School of Physics and Optoelectronic Engineering, Shenzhen University, China, focusing on femtosecond laser-driven two-photon polymerization for fiber Bragg grating applications. She earned her Ph.D. in Physics (Electronics) from Changchun University of Science and Technology, China, with a thesis on multifunctional nanostructured surfaces via laser interference lithography and metal-assisted chemical etching. With experience as Head of the Physics Department at Legend Institute, Pakistan, and as a lecturer at NFC Institute of Engineering and Technology, she blends teaching and high-impact research. She has published in leading journals such as Applied Optics, Nanotechnology, Langmuir, and Applied Surface Science. Dr. Saeed is a recipient of multiple scholarships and awards and actively contributes to global R&D projects in micro/nano manufacturing and surface engineering.

Author Profile

Scopus | ORCID | Google scholar

Education

Dr. Sadaf Saeed holds a Postdoctoral fellowship in Physics from Shenzhen University. She completed her Ph.D. in Physics (Electronics) at Changchun University of Science and Technology, China, under the supervision of Prof. Dr. Zuobin Wang, with a focus on micro/nanostructured surfaces fabricated via laser techniques. She earned her M.Phil. in Physics and B.Sc. in Physics from Bahauddin Zakariya University, Multan, Pakistan, where she ranked among the top students. Her M.Phil. thesis focused on the structural and electrical properties of metal-polymer composites. She also holds an F.Sc. in General Science and Matriculation in Science from BISE Multan. Throughout her academic journey, she pursued rigorous coursework in classical mechanics, electronics, material science, computational physics, and solid-state physics, building a solid foundation for interdisciplinary research in nanotechnology, optics, and material characterization.

Experience

Dr. Sadaf Saeed has over seven years of progressive experience in academic research and teaching. Currently, she is a Postdoctoral Researcher at Shenzhen University, China. She worked as a researcher at the International Research Centre for Nano Handling and Manufacturing, Changchun, China, contributing to international nanofabrication projects. Previously, she served as Head of the Physics Department at Legend Institute of Management Sciences, Multan, where she managed curriculum development, academic planning, and student mentoring. She worked as a Physics Lecturer at NFC Institute of Engineering and Technology, teaching core physics courses. She has significant lab experience in material simulations, spectroscopy, and nanostructure characterization using advanced tools like SEM, TEM, AFM, and FDTD. She is also skilled in MATLAB, COMSOL, VASP, OriginPro, and other simulation environments, making her a versatile researcher capable of both theoretical and experimental work.

Awards and Honors

Dr. Sadaf Saeed has received several awards and honors in recognition of her academic and research excellence. She was selected for the Best Student Paper Award at the IEEE 3M-NANO 2023 Conference in Chengdu, China. She was a recipient of the Chinese Government Scholarship for her Ph.D. studies (2019–2023). During her M.Phil. program, she ranked among the top three students in her department. She has actively participated in major international conferences, including the IEEE 3M-NANO 2022 & 2023, the Asian VCSEL Day 2023, the 11th International Conference on Information Optics and Photonics (Xian, China), and AOPC 2019. Her patent on femtosecond laser fabrication for fiber Bragg grating applications further demonstrates her innovation. Additionally, she has contributed to several high-impact national and international R&D projects, including China’s “111” Project, Horizon Europe’s L4DNANO, and Jilin Provincial Science and Technology initiatives.

Research Focus 

Dr. Sadaf Saeed’s research bridges the disciplines of surface engineering, laser physics, and nanotechnology. Her primary focus is on the fabrication of multifunctional micro/nanostructured surfaces using Laser Interference Lithography (LIL) and Metal-Assisted Chemical Etching (MACE). She explores their applications in antireflection, superhydrophobicity, enhanced wettability, and SERS. In her postdoctoral work, she investigates femtosecond laser-driven two-photon polymerization techniques for phase mask fabrication in fiber Bragg grating systems, targeting high-precision optical device manufacturing. She is proficient in computational simulations such as FDTD, DFT, COMSOL, and VASP, applying them to optimize structures before fabrication. Her work also intersects optics, materials characterization, and electrical properties of nano-interfaces, contributing to the next generation of functional surfaces and optical components. She collaborates across international labs and contributes to major global initiatives, including the Horizon Europe L4DNANO project and National R&D Programs of China, emphasizing interdisciplinary, solution-oriented research.

Publications

  • Optimizing broadband antireflection with Au micropatterns: a combined FDTD simulation and two-beam LIL approachApplied Optics (2024)
  • Hierarchical and Gradient Si Nano Wires-holes Arrays by LIL and MACEIEEE 3M-NANO Conference Proceedings (2022)
  • Si Nanowires-holes Arrays with Enhanced WettabilityIEEE 3M-NANO Conference Proceedings (2023)
  • Synergistic Antireflection and SERS Enhancement in Hybrid Silicon Nanowires by LIL and MACESpringer Journal of Materials Science (Accepted)
  • Design and Fabrication of Silicon Micro Rings Using FDTD and Laser Interference Lithography and SERS PropertiesJournal of Optics (Accepted)
  • Integration of Three-Beam Laser Interference Lithography and Metal Assisted Chemical Etching…Mechanics of Advanced Materials and Structures (Accepted)
  • Advanced Femtosecond Laser-Driven Two-Photon Polymerization Technique for Phase Mask FabricationUS Patent, Shenzhen University
  • Laser Interference Lithography—A Method for the Fabrication of Controlled Periodic StructuresNanomaterials (2023)

Conclusion

Dr. Sadaf Saeed presents a compelling profile with a clear research focus, international recognition, and a strong record of academic output. Her contributions to micro/nanostructure fabrication, laser technologies, and optical device engineering are valuable to both scientific advancement and real-world applications.

Yongqiang Ji | Experimental methods | Best Researcher Award

Assoc. Prof. Dr. Yongqiang Ji | Experimental methods | Best Researcher Award

Henan Academy of Sciences | China

Ji Yongqiang is a highly accomplished researcher specializing in nanomaterials, particularly quantum dots and optical devices like QLEDs and solar cells. He is currently serving as an Associate Researcher at the Henan Academy of Sciences and has previously held positions as an Assistant Researcher at Peking University and a PhD student at Xi’an Jiaotong University. His research has earned him recognition for his work in luminescent nanocrystals and perovskite quantum dots, driving innovations in solar cell technology and light-emitting devices.

👨‍🎓Profile

Scopus

Orcid

📚 Early Academic Pursuits

Ji’s academic journey began at Xi’an University of Technology, where he earned his Bachelor’s in Applied Physics. Under the guidance of Associate Professor Men Shouqiang, he laid a strong foundation in solid-state physics, digital circuits, and quantum mechanics. His interest in material science and semiconductor physics grew during his master’s at Henan University, where he worked with Professor Qian Lei and contributed significantly to condensed matter physics. His doctoral studies at Xi’an Jiaotong University under Professor Wang Minqiang focused on electronic ceramics and device technologies, marking the start of his journey into nanomaterials and optoelectronics.

🔬 Professional Endeavors

Ji’s career has been characterized by exceptional research leadership and contributions to luminescent nanocrystals, quantum dot solar cells, and QLEDs. At Peking University, under Professor Gong Qihuang, he developed cutting-edge devices and optimized fabrication platforms for quantum dots, which enhanced device efficiency and stability. His hands-on expertise spans from magnetron sputtering to transmission electron microscopy (TEM), showcasing his proficiency in advanced research instruments.

💡 Contributions and Research Focus

Ji’s research is driven by the fabrication and spectral tuning of luminescent nanocrystals, particularly quantum dots and perovskite quantum dots. Key contributions include:

  • Quantum Dot Solar Cells: He developed a precise fabrication platform for AgBiS2 quantum dots, optimizing light absorption and solar cell efficiency.
  • QLED Device Optimization: By improving spin-coating speeds and nanocrystal concentrations, Ji achieved high-brightness QLEDs, pushing the boundaries of light-emitting devices.
  • Perovskite Nanostructures: He pioneered research into 1D nanostructures and core-shell structures, improving optical properties and stability for applications in optical communication and energy harvesting.

🌍 Impact and Influence

Ji’s work has left a lasting impact in the fields of nanotechnology, optical devices, and energy solutions. His research on quantum dot solar cells and QLEDs is essential for the advancement of renewable energy technologies and next-generation display systems. Through his collaborations with leading institutions like Peking University and Henan Academy of Sciences, Ji has not only advanced scientific understanding but also contributed to the commercialization of advanced technologies.

📑 Academic Cites

Ji’s research is widely cited in high-impact journals such as Nanotechnology, Micromachines, Materials, and Nano-Structures & Nano-Objects. His work on perovskite quantum dots and quantum dot solar cells has been instrumental in shaping contemporary research in renewable energy and optoelectronics. His publications have earned recognition for their novelty, technical depth, and practical applications.

🛠️ Research Skills

Ji’s technical expertise is multifaceted, and his key research skills include:

  • Synthesis Methods: Mastery in hot injection, solvothermal, and ball-milling techniques to prepare quantum dots.
  • Device Fabrication: Expertise in QLED and solar cell fabrication, optimizing processes like spin coating and annealing to enhance device performance.
  • Material Characterization: Proficient in TEM, PR745 LED testing systems, and vacuum coating for material analysis and device testing.

🏫 Teaching Experience

Ji has shared his knowledge as a mentor to graduate students at Henan University and Xi’an Jiaotong University, guiding them through complex topics in semiconductor physics and material science. His role as a reviewer for various scientific journals demonstrates his commitment to fostering academic growth and providing critical feedback to emerging researchers in the field.

🏆 Awards and Honors

Ji’s academic excellence is reflected in numerous awards and scholarships, including:

  • Third-Class Scholarship at Xi’an University of Technology (2012)
  • First-Class Academic Scholarship at Henan University (2014)
  • Yao Xi Ferroeletric Scholarship at Xi’an Jiaotong University (2020)
  • Boya Postdoctoral Program at Peking University (2021)
  • Outstanding Graduate of Shaanxi Province (2022)

🌟 Legacy and Future Contributions

Looking ahead, Ji is well-positioned to continue making groundbreaking contributions to the fields of nanotechnology and energy solutions. His ongoing projects in perovskite QLEDs and quantum dot solar cells are poised to lead to more efficient, durable, and cost-effective devices. His expertise in quantum materials will likely play a crucial role in the future development of sustainable energy technologies and advanced optoelectronic systems. Ji’s commitment to interdisciplinary research and mentorship ensures a bright future for both his career and the next generation of researchers.

Publications Top Notes

Group-VA Doped ZnO Injection Layer for Bright and Efficient Perovskite Light-Emitting Diodes

  • Authors: X. Yang, Y. Ji, Q. Li, C. Lu, R. Zhu
    Journal: Advanced Functional Materials
    Year: 2025

Surface-enhanced Raman scattering of R6G dimerization during self-healing of gel

  • Authors: Y. Zhou, M. Wang, J. Wang, N.V. Gaponenko, A.S. Bhatti
    Journal: Mikrochimica Acta
    Year: 2025

Solvent-Engineering-Assisted Ligand Exchange Strategy for High-Efficiency AgBiS2 Quantum Dot Solar Cells

  • Authors: Q. Zhong, B. Zhao, Y. Ji, R. Zhu, L. Zhao
    Journal: Angewandte Chemie – International Edition
    Year: 2024

Lateral Phase Heterojunction for Perovskite Microoptoelectronics

  • Authors: L. Li, H. Yan, S. Li, X. Wang, R. Zhu
    Journal: Advanced Materials
    Year: 2024

Ligand-Tuned AgBiS2 Planar Heterojunctions Enable Efficient Ultrathin Solar Cells

  • Authors: J. Chen, Q. Zhong, E. Sirotti, R. Zhu, I.D. Sharp
    Journal: ACS Nano
    Year: 2024

 

Celal Kursun | Experimental methods | Best Researcher Award

Assoc Prof Dr. Celal Kursun | Experimental methods | Best Researcher Award

Head of Materials Science and Engineering at Kahramanmaras Sutcu Imam University, Turkey

Dr. Celal Kurşun is an Associate Professor at Kahramanmaraş Sütçü İmam University, specializing in Materials Science and Engineering. He completed his postdoctoral research at the University of Wisconsin-Madison and has a strong background in the synthesis and characterization of advanced materials, including magnesium-based alloys and metallic glasses. Dr. Kurşun has held various academic positions, including Assistant Professor and Research Specialist, and has supervised numerous graduate theses.

🎓Profile

Early Academic Pursuits 📚

Dr. Celal Kurşun’s academic journey is a testament to his dedication to materials science and engineering, with a particular focus on advanced alloys, structural properties, and energy applications. His academic path began with a Bachelor’s degree in 2009, followed by a Master’s degree in 2012, where he investigated the structural and thermal properties of copper-based alloys. These early pursuits laid the foundation for his more extensive doctoral research, where he completed not one but two PhD theses. The first, completed in 2015, focused on the structural, thermal, and mechanical properties of Cu-based nanocrystalline alloys, while the second (2018) shifted focus to magnesium-based amorphous and nanocrystalline alloys, particularly their mechanical and hydrogen storage capacities. This early academic pursuit of diverse materials’ properties set the stage for his later contributions to high-impact research areas such as energy storage, radiation shielding, and alloy design.

Professional Endeavors & Postdoctoral Research 🔬

Dr. Kurşun’s professional career is distinguished by both teaching and high-level research. After earning his PhD, he undertook a postdoctoral position at the prestigious University of Wisconsin-Madison (2018-2020) within the Materials Science and Engineering Department. Here, his research concentrated on the design, synthesis, and characterization of advanced magnesium-based bulk metallic glass alloys for hydrogen storage and energy applications. This period not only sharpened his research skills but also allowed him to engage in cutting-edge projects with significant implications for sustainable energy technologies. His postdoctoral work solidified his reputation as a leading figure in the study of energy-efficient materials.

Contributions and Research Focus ⚙️

Dr. Kurşun’s research focuses on advanced materials, particularly nanostructured and metallic glass alloys. His work addresses critical challenges in energy storage, with a focus on hydrogen storage in magnesium-based alloys, which holds promise for clean energy applications. Additionally, his research on radiation shielding materials, such as boron-doped titanium alloys and Al-Gd2O3 composites, contributes to industries requiring advanced protective materials against neutron and gamma radiation, such as nuclear energy and space exploration.

Impact and Influence 🌍

Dr. Kurşun’s research has not only advanced academic knowledge but has also had significant real-world applications. His groundbreaking work on magnesium-based alloys for hydrogen storage and his innovative approaches to improving radiation shielding materials have placed him at the forefront of energy and environmental research. Furthermore, his academic leadership has had a broad impact through the mentorship of numerous graduate students, many of whom have gone on to pursue successful careers in materials science and engineering. His recognition within international scientific organizations such as the American Physical Society and The Minerals, Metals & Materials Society underscores his influence on the global materials science community.

Academic Citations 📑

Dr. Kurşun’s work has been consistently recognized and cited in leading international journals, including Journal of Materials Science: Materials in Electronics, Ceramics International, and HELIYON. His research on the structural and mechanical properties of alloys, radiation shielding, and catalytic processes is frequently cited by researchers working in similar domains, contributing to the development of novel materials and technologies. His citation record reflects the impact his work has had on advancing knowledge and innovation in materials science, energy storage, and environmental sustainability.

Technical Skills 🛠️

Dr. Kurşun possesses an extensive skill set, combining advanced experimental techniques with theoretical modeling. His technical expertise includes the design, synthesis, and characterization of amorphous and nanocrystalline alloys, as well as mechanical testing, neutron and gamma radiation shielding, and the study of thermal properties of materials. His familiarity with techniques such as arc melting, mechanical alloying, and the use of various characterization tools (e.g., X-ray diffraction, scanning electron microscopy) allows him to address complex challenges in materials science.

Teaching Experience 🍎

Throughout his career, Dr. Kurşun has demonstrated a strong commitment to teaching and mentoring students. As an Associate Professor, he has designed and taught various courses in materials science, solid-state physics, and engineering, preparing the next generation of scientists and engineers. His approach to teaching emphasizes not only the theoretical foundations of materials science but also practical, hands-on experiences that prepare students for real-world challenges. In addition to his classroom duties, Dr. Kurşun has supervised a number of graduate and undergraduate theses, helping students pursue their research interests and develop critical thinking and analytical skills.

Legacy and Future Contributions 🔮

Dr. Kurşun’s legacy is already being shaped by his continued research and mentorship, with his influence extending to both the scientific community and the educational sector. Looking ahead, Dr. Kurşun aims to deepen his work on sustainable materials for energy applications, particularly in developing alloys that can address the global demand for clean energy solutions. His research trajectory also hints at greater interdisciplinary work, exploring areas where materials science meets environmental sustainability, energy storage, and the circular economy.

Publication Top Notes📖

Structure, mechanical, and neutron radiation shielding characteristics of mechanically milled nanostructured (100-x)Al-xGd2O3 metal composites
  • Authors: Celal Kursun, Meng Gao, Ali Orkun Yalcin, Khursheed A. Parrey, Yasin Gaylan
    Journal: Ceramics International
    Year: 2024
Unraveling structural relaxation induced ductile-to-brittle transition from perspective of shear band nucleation kinetics in metallic glass
  • Authors: Meng Gao, Celal Kursun, John H. Perepezko
    Journal: Journal of Alloys and Compounds
    Year: 2023
Synthesis and mechanical properties of (Ni70Si30)100−x Fe x (x = 0, 5, 10) alloys
  • Authors: Celal Kursun, Ahmet Muslim Aksoy
    Journal: Emerging Materials Research
    Year: 2019
Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15−xSix (X = 1, 2, 3) alloys by mechanical alloying
  • Authors: Celal Kursun, Musa Gogebakan, Hasan Eskalen
    Journal: Materials Research Express
    Year: 2018
The Effect of Milling Time on the Synthesis of Cu54Mg22Ti18Ni6 Alloy
  • Authors: Celal Kursun, Musa Gogebakan
    Journal: 9th International Physics Conference of the Balkan Physical Union (Bpu-9)
    Year: 2016