Nahid Chaudhary | Experimental methods | Best Researcher Award

Mrs. Nahid Chaudhary | Experimental methods | Best Researcher Award

Indian Institute of Technology Delhi | India

Dr. Nahid Chaudhary is a highly accomplished researcher and engineer specializing in nanoelectronics and semiconductor manufacturing. With a profound focus on the growth of 2D materials and van der Waals heterostructures, he has demonstrated exceptional skills in semiconductor device fabrication and advanced characterization techniques. He is dedicated to advancing the field of nanoelectronics, with a particular emphasis on sensors, optoelectronic devices, and semiconductor industries. Dr. Chaudhary is known for his interdisciplinary collaboration and innovative contributions to device performance and reliability.

👨‍🎓Profile

Google scholar

Scopus

Early Academic Pursuits 🎓

Dr. Chaudhary’s academic journey began with a B.Tech in Electronics and Communication Engineering from Uttar Pradesh Technical University (UPTU), where he graduated with a strong 80.04%. He further advanced his knowledge with an M.Tech in Nanoscience and Nanotechnology from Guru Gobind Singh Indraprastha University (GGSIU) with an impressive 80% score. His Ph.D. in Nanotechnology at Jamia Millia Islamia, New Delhi, focused on the synthesis and applications of 2D MoS2 nanosheets for optical sensing, supported by the Inspire Fellowship from the Department of Science and Technology (DST).

Professional Endeavors 💼

Dr. Chaudhary’s current role as a Postdoctoral Fellow at the Indian Institute of Technology (IIT), Delhi, sees him leading cutting-edge research in Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD) growth of 2D materials and van der Waals heterostructures. His professional work has directly impacted the advancement of semiconductor devices through innovative material development for sensors and optoelectronic devices. His contributions have spanned both academia and industry, where his work on next-generation sensors and semiconductor applications is highly regarded.

Contributions and Research Focus 🔬

Dr. Chaudhary’s research focuses on the development and growth of 2D materials, particularly in the fields of sensors, photodetectors, and supercapacitors. His work on van der Waals heterostructures has proven vital in enhancing device performance and reliability. Through his Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD) techniques, he has developed materials with promising applications in semiconductor devices. His key research has involved the optical sensing capabilities of MoS2 nanosheets, which have applications in biosensors and photocatalysis.

Impact and Influence 🌍

Dr. Chaudhary’s impact in the field of nanoelectronics is evident through his innovative research and its direct application to cutting-edge technologies. His work on photodetectors and supercapacitors is transformative, addressing crucial issues in the semiconductor industry. His research into 2D materials such as MoS2 and MoTe2 has laid the groundwork for next-generation sensors and optoelectronic devices. Dr. Chaudhary is recognized for his collaborative efforts and interdisciplinary approach, contributing to the global scientific community.

Research Skills 🛠️

Dr. Chaudhary possesses extensive expertise in Molecular Beam Epitaxy (MBE) and Chemical Vapor Deposition (CVD), crucial for the synthesis of 2D materials. He is proficient in advanced characterization techniques including X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and UV-Vis Spectrophotometry. His skills extend to nanofabrication through maskless lithography, wet chemical etching, and photolithography, positioning him as a key innovator in semiconductor device fabrication. Additionally, his proficiency in cleanroom protocols and material processing ensures the development of high-performance devices.

Teaching Experience 🍎

Dr. Chaudhary is deeply committed to mentoring and teaching the next generation of engineers and researchers. He actively participates in training and mentorship programs in nanoelectronics and semiconductor technology, guiding students and young researchers on cutting-edge research techniques. His contributions extend to teaching at IIT Delhi, where he engages in interdisciplinary teaching and research-based courses, offering students hands-on experience in advanced material synthesis and device fabrication.

Awards and Honors 🏆

Dr. Chaudhary’s exceptional contributions have earned him several prestigious awards:

  • Inspire Fellowship from the Department of Science and Technology (DST) for his Ph.D. research.
  • Best Poster Award at ETAMS 2020 for his work on MoS2 Nanosheets for photodetector applications.
  • Best Poster Award at Nano Road Show 2020 for his groundbreaking research on MoS2-PANI Hybrid Structures for high photoresponsive properties.

His awards demonstrate his leading position in nanotechnology research.

Legacy and Future Contributions 🌱

Dr. Chaudhary is poised to leave a lasting legacy in the field of nanoelectronics. His research on 2D materials is setting the foundation for the future of semiconductor devices, particularly in photodetectors, supercapacitors, and biosensors. Looking ahead, Dr. Chaudhary aims to continue pushing the boundaries of material science and device performance. He envisions a future where his innovations can transform industries such as IoT and optical sensing, thereby shaping the next wave of technological advances in nanotechnology. His ongoing contributions will undoubtedly continue to influence and inspire researchers in the field for years to come.

Publication Top Notes

Utilizing the Ability of Few-Layer MoS2 Integrated with MOCVD-Grown ZnGa2O4 for Thermally Stable Deep Ultraviolet Detection Performance

  • Authors: T Khan, N Chaudhary, RH Horng, R Singh
    Journal: ACS Applied Electronic Materials, 6 (10), 7600-7610
    Year: 2024

High-Performance Visible-to-SWIR Photodetector Based on the Layered WS2 Heterojunction with Light-Trapping Pyramidal Black Germanium

  • Authors: K Bhattacharya, N Chaudhary, P Bisht, B Satpati, S Manna, R Singh, …
    Journal: ACS Applied Materials & Interfaces, 16 (36), 48517-48525
    Year: 2024

Quasi-dry layer transfer of few-layer MBE-grown MoTe2 sheets for optoelectronic applications

  • Authors: N Chaudhary, T Khan, K Bhatt, R Singh
    Journal: Sensors and Actuators A: Physical, 115727
    Year: 2024

Gamma-induced stress, strain and p-type doping in MBE-grown thin film MoTe2

  • Authors: N Chaudhary, K Bhatt, T Khan, R Singh
    Journal: Physical Chemistry Chemical Physics, 26 (34), 22529-22538
    Year: 2024

Comparative study of photocatalytic activity of hydrothermally synthesized ultra-thin MoS2 nanosheets with bulk MoS2

  • Authors: N Chaudhary, K Raj, A Harikumar, H Mittal, M Khanuja
    Journal: AIP Conference Proceedings, 2276 (1)
    Year: 2020

 

Syed Hamza Safeer Gardezi | Experimental methods | Best Researcher Award

Dr. Syed Hamza Safeer Gardezi | Experimental methods | Best Researcher Award

Quaid i Azam Universty, Islamabad | Pakistan

Dr. Syed Hamza Safeer Gardezi is an accomplished academic with a rich background in Physics. His academic journey began with a Bachelor’s degree in Science from the University of Punjab, Lahore, Pakistan. He then pursued M.Sc. and M.Phil. degrees in Physics from Quaid-i-Azam University, Islamabad, Pakistan, followed by a Ph.D. from the Pontifical Catholic University of Rio de Janeiro, Brazil. Dr. Gardezi’s research focused on Atomically Thin Semiconducting Transition-Metal Dichalcogenides and their electro-optical properties. With a Post-Doctoral fellowship at the Brazilian Center for Research in Physics (CBPF), Dr. Gardezi now serves as an Assistant Professor at Quaid-i-Azam University, Islamabad.

👨‍🎓Profile

Google scholar

Scopus

Orcid

🎓 Early Academic Pursuits

Dr. Gardezi’s academic journey began with a solid foundation in Physics. His undergraduate studies in Mathematics and Physics at the University of the Punjab set the stage for advanced degrees. He continued his pursuit of knowledge through M.Sc. and M.Phil. degrees at Quaid-i-Azam University, where his thesis research focused on Superconductor materials. His fascination with nanomaterials, especially Transition Metal Dichalcogenides (TMDs), led him to Brazil, where he completed his Ph.D. research on MoS2, WS2, and related materials.

💼 Professional Endeavors

Dr. Gardezi’s professional career began as a Lecturer at the Global System of Integrated Studies in Islamabad, Pakistan. He later joined Quaid-i-Azam University as an Assistant Professor, where he has contributed significantly to the Department of Physics. His professional pursuits extend internationally, particularly during his Post-Doctoral research at CBPF in Brazil, focusing on the Spin Hall Effect and Valley Hall Effect in heterostructures like YIG/MoS2.

🔬 Contributions and Research Focus

Dr. Gardezi’s primary research interests are in the synthesis and characterization of two-dimensional materials like TMDs, Graphene, and their heterostructures. He is particularly interested in chemical vapor deposition (CVD) techniques to synthesize these materials and study their optical and magnetic properties. Additionally, his work on high-temperature superconductors and solar cells highlights his commitment to exploring green technologies for sustainable energy. His focus also includes the study of defects and Raman scattering mechanisms in nanomaterials.

🌍 Impact and Influence

Dr. Gardezi has significantly influenced nanotechnology https://hep-conferences.sciencefather.com/awards-winners/and material science research, particularly in semiconducting materials and superconductors. His work on TMDs has contributed to the broader understanding of two-dimensional materials and their potential applications in electronics, photonics, and energy solutions. His research papers have been published in leading journals and widely cited by fellow scientists, helping drive forward the development of next-generation materials and technologies.

🧪 Research Skills

Dr. Gardezi is well-versed in experimental techniques and synthesis methods, including:

  • Chemical Vapor Deposition (CVD) for 2D-materials.
  • Raman and Photoluminescence (PL) Spectroscopy.
  • X-ray Diffraction (XRD) analysis.
  • Magnetic Susceptibility and Four Probe Resistivity Measurements.
  • Electron Beam Lithography and Photolithography for device fabrication.

These skills position him as a leading researcher in nanomaterials and advanced materials science.

👨‍🏫 Teaching Experience

As an Assistant Professor at Quaid-i-Azam University, Dr. Gardezi has taught various undergraduate and graduate-level courses in Physics. Some of the courses he has taught include:

  • Introductory Mechanics (Undergraduate).
  • Experimental Physics Methods and Statistical Physics (M.Phil./Ph.D. level).
  • Electromagnetism and Atomic and Molecular Physics.

In addition to his academic work, he has also contributed to laboratory sessions as a Teaching Intern at PUC-Rio in Brazil.

🏅 Awards and Honors

Dr. Gardezi has received multiple scholarships and recognitions throughout his career, including the CNPq Scholarship for his Postdoctoral Research. His contributions to material science and nanotechnology have been acknowledged at various international conferences and by leading scientific organizations, showcasing his growing impact on the global scientific community.

🕰️ Legacy and Future Contributions

Looking forward, Dr. Gardezi aims to continue pushing the boundaries of material synthesis and characterization. His ongoing research into TMDs and superconductors is set to lead to innovations in quantum computing, energy storage, and photonics. His work not only paves the way for future breakthroughs in sustainable energy solutions but also holds potential for the next generation of electronic devices. His legacy will likely be shaped by his contributions to green technologies and nanoscience.

Publications Top Notes

Enhancing Superconductivity in Cu1/2Tl1/2Ba2Ca2Cu3O10−δ with Graphene Incorporation: A Comprehensive Study

  • Authors: Syed Hamza Safeer, Nizar Saeed, Abida Saleem, Kashif Naseem, Nawazish A. Khan
    Journal: Langmuir
    Year: 2025

Assessment of the importance and catalytic role of chromium oxide and chromium carbide for hydrogen generation via hydrolysis of magnesium

  • Authors: Fei Qin, Yue Zhang, Kashif Naseem, Zhanjun Chen, Suo Guoquan, Waseem Hayat, Syed Hamza Safeer Gardezi
    Journal: Nanoscale
    Year: 2024

Photoluminescent and Magnetic Properties of Mononuclear Lanthanide-Based Compounds Containing the Zwitterionic Form of 4-Picolinic Acid as a Ligand

  • Authors: Esther Areas, Bruno Rodrigues, Ana Carolina do Nascimento, Henrique C. S. Junior, Glaucio Braga Ferreira, Fabio Miranda, Flavio Garcia, Syed Hamza Safeer, Stéphane Soriano, Guilherme Guedes
    Journal: Journal of the Brazilian Chemical Society
    Year: 2024

Exploring the magnetic behavior of potassium-doped Cu0.5Tl0.5Ba2Ca2Cu3-xKxO10-δ (x=0, 1, 2.5, 3) superconductors

  • Authors: Syed Hamza Safeer, Sadia Arooj, Anila Kanwal, Zil e Huma, Flavio Garcia
    Journal: Physica B: Condensed Matter
    Year: 2024

Automated mechanical exfoliation technique: a spin pumping study in YIG/TMD heterostructures

  • Authors: Rodrigo Torrão Victor, John Fredy Ricardo Marroquin, Syed Hamza Safeer, Danian Alexandre Dugato, Braulio Soares Archanjo, Luiz Carlos Sampaio, Flavio Garcia, Jorlandio Francisco Felix
    Journal: Nanoscale Horizons
    Year: 2023

 

 

 

A. M S Arulanantham | Experimental methods | Best Researcher Award

Dr. A. M. S. Arulanantham | Experimental methods | Best Researcher Award

Dhanalakshmi srinivasan College of Engineering and Technology | India

Dr. A. Maria Susai Arulanantham, an accomplished physicist and researcher, holds a Ph.D. in Physics from Arul Anandar College, Madurai Kamaraj University, India. His extensive research focuses on semiconducting tin sulfide thin films for solar cell applications, showcasing his commitment to advancing clean and green energy technologies. Dr. Arulanantham’s work has consistently contributed to the fields of material science and renewable energy, making his a highly regarded figure in the scientific community.

👨‍🎓Profile

Google scholar

Scopus

Orcid

Early Academic Pursuits 📚

Dr. Arulanantham’s academic journey began with a B.Sc. in Physics from St. Xavier’s College, followed by a Master’s in Physics from Arul Anandar College, Madurai Kamaraj University. He further pursued his Ph.D., where he focused on the investigation of tin sulfide thin films for use in solar cells and photosensing applications. These early academic pursuits laid a strong foundation for his successful career as a researcher.

Professional Endeavors 💼

Dr. Arulanantham has garnered significant professional experience throughout his career. He worked as a Junior Research Fellow (JRF) on a DST Major Project (2014-2017), where his research contributed to the development of solar energy technologies. Additionally, his teaching career includes over 4 years of service as an Assistant Professor in the Department of Physics at St. Joseph’s College of Arts and Science, Vaikalipatti, where he nurtured the next generation of physicists.

Contributions and Research Focus 🔬

Dr. Arulanantham’s research focuses primarily on tin sulfide materials (SnS, SnS2, Sn2S3, and Sn3S4) for solar cells and photosensing applications. He has worked extensively on thin film fabrication and characterization, contributing to the development of solar cells and gas-sensing devices. His work emphasizes sustainability, with an overarching goal of improving energy efficiency and advancing green energy technologies for a cleaner future.

Research Skills 🔧

Dr. Arulanantham is highly skilled in material synthesis techniques, including Chemical Bath Deposition (CBD), Spin Coating, and Chemical Spray Pyrolysis (CSP). He also has hands-on expertise in advanced characterization techniques such as X-ray Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM), and UV-Vis Spectroscopy. These techniques are essential for producing high-quality thin films for solar cell applications and gas sensors.

Technical Skills 💻

Dr. Arulanantham is proficient in C, C++ programming, MS Office, and instrument design. He also has experience with Arduino and X-Y stepper programs, skills that are essential for his research and instrumentation development. His technical skills complement his research, enabling his to develop custom solutions for material synthesis and data analysis.

Teaching Experience 👩‍🏫

In addition to his research work, Dr. Arulanantham has an extensive teaching experience of over 4 years, having served as an Assistant Professor in the Department of Physics at St. Joseph’s College of Arts and Science. He has actively engaged in student mentorship, encouraging curiosity and fostering a passion for physics and material science. His academic guidance has influenced countless students in pursuing careers in science and research.

Awards and Honors 🏆

Dr. Arulanantham’s contributions to research and academia have been recognized through numerous awards and honors, including:

  • Best Poster Presentation at Muslim Arts College, Thiruvithancode (2016)
  • Best Poster Presentation at Madurai Kamaraj University (2017)
  • Best Poster Presentation at Mother Theresa Women’s University, Kodaikanal (2018)
  • Junior Research Fellowship (JRF) from DST, India (2014-2017)

These accolades underscore his commitment to excellence in both research and education.

Citations📚

A total of 571 citations for his publications, demonstrating the impact and recognition of his research within the academic community.

  • Citations    571
  • h-index         16
  • i10-index      23

Publications Top Notes

 

 

Md Wahadoszamen | Experimental methods | Best Researcher Award

Prof. Dr. Md Wahadoszamen | Experimental methods | Best Researcher Award

Professor of Physics at University of Dhaka, Bangladesh

Profile🎓

Early Academic Pursuits 🎓

Dr. Md. Wahadoszamen embarked on his academic journey at the University of Dhaka, Bangladesh, where he earned his BSc in Physics (April 1999) and MSc in Physics (December 2000). Driven by his passion for material science, he pursued further studies at Hokkaido University, Japan, where he earned his PhD in Material Science in March 2006. His academic pursuits laid a solid foundation in experimental and theoretical laser physics, biophotonics, and nanophotonics, which would become central to his future research.

Professional Endeavors and Research Focus 🔬

Dr. Wahadoszamen’s career spans a broad spectrum of prestigious academic institutions across the globe. He joined the University of Dhaka as a Lecturer in 2006, eventually advancing to the position of Professor in May 2016. His academic role at the University of Dhaka has been complemented by positions at Kwansei Gakuin University in Japan, Carnegie Mellon University in the United States, and VU University Amsterdam in the Netherlands. These international engagements have enriched his research and expanded his academic influence globally.

His primary research interests lie at the intersection of laser physics, optical physics, and biophotonics. Specifically, Dr. Wahadoszamen has specialized in Raman Spectroscopy, Surface-Enhanced Raman Spectroscopy (SERS), Laser-Induced Breakdown Spectroscopy (LIBS), and Z-Scan Techniques. His work involves developing advanced materials like monometallic and bimetallic nanocomposites and highly fluorescent carbon nanodots, which have numerous applications in fields such as materials science, photonics, and biomedical imaging.

Contributions and Research Impact 🌟

Dr. Wahadoszamen’s contributions to laser and nanophotonics have significantly advanced the understanding of molecular interactions and material properties under laser illumination. His work on laser spectroscopy has provided new insights into nanomaterials and their applications, particularly in biomedical diagnostics and environmental monitoring. The development of carbon nanodots with high fluorescence properties has opened up new avenues in bioimaging and sensor technology. His research also explores biophysical applications of lasers, specifically in studying biological systems at the molecular and cellular levels.Through his research, Dr. Wahadoszamen has influenced key sectors, particularly in the fields of optical spectroscopy, nanotechnology, and biophotonics, where his work on nanocomposites and optical sensors has the potential to impact various industries, from medicine to environmental monitoring.

Teaching Experience and Mentorship 📚

Dr. Wahadoszamen has been an influential educator, teaching advanced courses in Quantum Mechanics, Biophysics, and Laser Physics at institutions such as the University of Dhaka, Kwansei Gakuin University, and University of Tsukuba. His extensive teaching experience, especially in guiding graduate students and postdocs, demonstrates his commitment to cultivating the next generation of scientists. He has taught graduate-level courses like Advanced Laser Physics for MS students, focusing on cutting-edge topics in laser theory and spectroscopy. In addition, he has supervised and mentored numerous MSc and PhD students throughout his career, preparing them to conduct pioneering research in physics and material science.

Technical Skills and Expertise 🛠️

Dr. Wahadoszamen possesses a wide range of technical skills that are critical to his research success:

  • Raman Spectroscopy (including Surface-Enhanced Raman Spectroscopy)
  • Laser-Induced Breakdown Spectroscopy (LIBS)
  • Z-Scan and Stark Spectroscopy
  • Nanocomposite Fabrication, including both monometallic and bimetallic materials
  • Fluorescence Spectroscopy and Absorption Spectroscopy

His ability to develop and implement innovative experimental techniques has led to significant advancements in molecular and material sciences.

Legacy and Future Contributions 🌍

Dr. Wahadoszamen’s career reflects his global impact as a leader in laser physics and biophotonics. His research legacy continues to inspire both his students and the broader scientific community. As a Professor and researcher, he has not only contributed to the scientific literature but also fostered a culture of collaborative research, working with prominent scientists from across the world. With future research projects focused on quantum photonics, bioimaging, and advanced nanomaterials, his work promises to make even more groundbreaking contributions to the fields of material science and biophotonics.

Research Collaborations and Academic Citations 📈

Dr. Wahadoszamen’s international research collaborations with experts from VU University Amsterdam, Carnegie Mellon University, Moscow State University, and many others have elevated his research output. His ability to engage with leading researchers from diverse institutions allows him to stay at the cutting edge of nanophotonics and biophotonics. With over 1000 citations and numerous influential publications in high-impact journals, his academic reputation continues to grow. His contributions have made a lasting impact in nanomaterials, molecular photonics, and laser spectroscopy.

Academic Service and Leadership 🏅

In addition to his research and teaching, Dr. Wahadoszamen has taken on leadership roles, such as serving as the Secretary for the International e-Conference on Physics 2021 organized by the University of Dhaka. He has also been an active student advisor and treasurer for various organizations, showcasing his commitment to academic service and community engagement. His leadership in organizing conferences and guiding young researchers further highlights his influence within the academic community.

A Vision for the Future 🌠

As Dr. Wahadoszamen continues to build on his outstanding achievements, his future contributions to nanotechnology, biophotonics, and laser spectroscopy are poised to shape the next generation of scientific innovations. His commitment to cutting-edge research, combined with his dedication to education and mentoring, ensures that his legacy will endure. Through his ongoing research in nanocomposites, carbon nanodots, and bioimaging, Dr. Wahadoszamen is well-positioned to continue influencing not only academic circles but also the broader scientific and technological landscape in the years to come.

Top Noted Publications📖

  • Authors: Michal Gwizdala, Tjaart PJ Krüger, Md Wahadoszamen, J Michael Gruber, Rienk Van Grondelle
  • Journal: The journal of physical chemistry letters
  • Year: 2018

Identification of two emitting sites in the dissipative state of the major light harvesting antenna

  • Authors: Md Wahadoszamen, Rudi Berera, Anjue Mane Ara, Elisabet Romero, Rienk van Grondelle
  • Journal: Physical Chemistry Chemical Physics
  • Year: 2012

Laser Raman spectroscopy with different excitation sources and extension to surface enhanced Raman spectroscopy

  • Authors: Md Wahadoszamen, Arifur Rahaman, Nabil Md Rakinul Hoque, Aminul I Talukder, Kazi Monowar Abedin, AFM Yusuf Haider
  • Journal: Journal of Spectroscopy
  • Year: 2015

Rigidity and polarity effects on the electronic properties of two deep blue delayed fluorescence emitters

  • Authors: Christian M Legaspi, Regan E Stubbs, Md Wahadoszaman, David J Yaron, Linda A Peteanu, Abraham Kemboi, Eric Fossum, Yongli Lu, Qi Zheng, Lewis J Rothberg
  • Journal: The Journal of Physical Chemistry
  • Year: 2018

Charge transfer states in phycobilisomes

  • Authors: Md Wahadoszamen, Tjaart PJ Krüger, Anjue Mane Ara, Rienk Van Grondelle, Michal Gwizdala
  • Journal: Biochimica et Biophysica Acta (BBA)-Bioenergetics
  • Year: 2020